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Abstract
Cognitive control mechanisms support the deliberate regulation of thought and behavior based

on current goals. Recent work suggests that motivational incentives improve cognitive control

and has begun to elucidate critical neural substrates. We conducted a quantitative meta-analysis

of neuroimaging studies of motivated cognitive control using activation likelihood estimation

(ALE) and Neurosynth to delineate the brain regions that are consistently activated across stud-

ies. The analysis included studies that investigated changes in brain activation during cognitive

control tasks when reward incentives were present versus absent. The ALE analysis revealed

consistent recruitment in regions associated with the frontoparietal control network including

the inferior frontal sulcus and intraparietal sulcus, as well as regions associated with the salience

network including the anterior insula and anterior mid-cingulate cortex. As a complementary

analysis, we performed a large-scale exploratory meta-analysis using Neurosynth to identify

regions that are recruited in studies using of the terms cognitive control and incentive. This anal-

ysis replicated the ALE results and also identified the rostrolateral prefrontal cortex, caudate

nucleus, nucleus accumbens, medial thalamus, inferior frontal junction, premotor cortex, and

hippocampus. Finally, we separately compared recruitment during cue and target periods, which

tap into proactive engagement of rule-outcome associations, and the mobilization of appropri-

ate viscero-motor states to execute a response, respectively. We found that largely distinct sets

of brain regions are recruited during cue and target periods. Altogether, these findings suggest

that flexible interactions between frontoparietal, salience, and dopaminergic midbrain-striatal

networks may allow control demands to be precisely tailored based on expected value.
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1 | INTRODUCTION

The ability to maintain attention during a lecture, or flexibly shift

between writing a report and answering emails, or plan several steps

ahead during a chess match all require cognitive control—the capacity to

deliberately guide thought and behavior based on goals, especially in the

presence of distraction or competing responses (Botvinick, Braver, Barch,

Carter, & Cohen, 2001; Desimone & Duncan, 1995; Duncan, 2013;

Gollwitzer, 1999; Miller & Cohen, 2001; Miyake et al., 2000; Posner &

Dehaene, 1994; Posner & DiGirolamo, 1998; Stuss & Knight, 2002). Cog-

nitive control involves several related, yet dissociable abilities (Miyake

et al., 2000), including working memory (D'Esposito & Postle, 2015;

Funahashi, Chafee, & Goldman-Rakic, 1993; Fuster & Alexander, 1971;

Goldman-Rakic, 1987), representation of rules and context (Asaad,

Rainer, & Miller, 2000; Bunge, 2004; Cohen & Servan-Schreiber, 1992;

Dixon & Christoff, 2012; Koechlin, Ody, & Kouneiher, 2003; Miller &

Cohen, 2001; Munakata et al., 2011), conflict and error detection

(Botvinick et al., 2001; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis,

2004; Ullsperger, Danielmeier, & Jocham, 2014), inhibition of prepotent

responses (Aron, Robbins, & Poldrack, 2004), abstract thought and rea-

soning (Christoff et al., 2001; Christoff, Keramatian, Gordon, Smith, &

Madler, 2009), and set-shifting (Crone, Wendelken, Donohue, & Bunge,

2006; Dias, Robbins, & Roberts, 1996; Meiran, 1996; Meiran, 2000;

Rushworth, Passingham, & Nobre, 2002).

While early work identified the prefrontal cortex (PFC) as a critical

neural substrate (Desimone & Duncan, 1995; Duncan, 2001; Fuster,
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1989; Miller & Cohen, 2001; Passingham & Wise, 2012; Stuss &

Knight, 2002; Watanabe, 2017), it soon became clear that a much

broader network of regions support cognitive control, including poste-

rior parietal, lateral temporal, insular, and mid-cingulate cortices, as

well as parts of the basal ganglia. Together, these regions are often

referred to as the multiple demand (MD) system, although recent net-

work neuroscience approaches suggest that they may form at least

two distinct functional networks, known as the frontoparietal control

network (FPCN), and the salience/cingulo-opercular network (Cole

et al., 2013; Cole, Repovs, & Anticevic, 2014; Cole & Schneider, 2007;

Crittenden, Mitchell, & Duncan, 2016; Dixon et al., 2018; Dosenbach

et al., 2007; Duncan, 2010; Mitchell et al., 2016; Seeley et al., 2007;

Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 2010; Vincent,

Kahn, Snyder, Raichle, & Buckner, 2008). Cognitive control regions

flexibly represent a variety of task-relevant information and exert a

top-down influence on other regions, guiding activation in accordance

with current task demands (Badre & D'Esposito, 2009; Braver, 2012;

Buschman & Miller, 2007; Crowe et al., 2013; Desimone & Duncan,

1995; Dixon, Fox, & Christoff, 2014b; Duncan, 2010; Egner & Hirsch,

2005; Miller & Cohen, 2001; Tomita, Ohbayashi, Nakahara,

Hasegawa, & Miyashita, 1999).

2 | THE EFFECTS OF MOTIVATION ON
COGNITIVE CONTROL

As research progressed in delineating the components of cognitive

control, a separate stream of inquiry focused on the neural mecha-

nisms of assigning value to stimuli and value-guided decision making

(Daw, Niv, & Dayan, 2005; Dixon & Christoff, 2014; Dixon,

Thiruchselvam, Todd, & Christoff, 2017; Levy & Glimcher, 2012;

O'Doherty et al., 2004; Rangel, Camerer, & Montague, 2008; Rangel &

Hare, 2010; Rushworth, Noonan, Boorman, Walton, & Behrens, 2011;

Schoenbaum & Esber, 2010). The past decade has seen a synthesis of

these fields with a surge of interest in understanding how value influ-

ences the decision of whether or not to engage cognitive control and

the efficacy of implementing control (Botvinick & Braver, 2015;

Braver et al., 2014; Cohen, Braver, & Brown, 2002; Cools, 2016;

Dixon, 2015; Dixon & Christoff, 2012; Hazy, Frank, & O'Reilly, 2007;

McGuire & Botvinick, 2010; O'Reilly, Herd, & Pauli, 2010). This line of

inquiry is yielding new insights into mechanisms that allow the desire

to achieve a specific outcome to interact with the cognitive processes

that are necessary to realize that outcome and may ultimately provide

critical information about pathological conditions that involve altered

motivation–cognition interactions including depression, schizophrenia,

ADHD, and anxiety (Barkley, 1997; Bishop, Duncan, Brett, &

Lawrence, 2004; Chung & Barch, 2015; Davidson, 2000; Heller et al.,

2009; Kaiser et al., 2015a; Kaiser, Andrews-Hanna, Wager, &

Pizzagalli, 2015b; Nigg & Casey, 2005; Pessoa, 2008; Shackman et al.,

2011; Shackman et al., 2016).

Recent studies have shown that individuals are strongly biased

toward choosing habits and simple tasks over more complex or

demanding tasks that require cognitive control (Botvinick & Braver,

2015; Dixon & Christoff, 2012; Kool, McGuire, Rosen, & Botvinick,

2010; McGuire & Botvinick, 2010). This has led to notion that

cognitive control carries an intrinsic effort cost. This effort cost can be

offset by the opportunity to acquire a rewarding outcome. Studies

have shown that participants are considerably more likely to engage

cognitive control if doing so will result in a larger reward than if they

chose a habitual action (Dixon & Christoff, 2012; Westbrook, Kester, &

Braver, 2013). Thus, cognitive control engagement can be understood

as a special case of cost/benefit decision-making whereby the

expected value of the outcome that will result from engaging cogni-

tive control is weighed against the effort cost of its implementation

(Botvinick & Braver, 2015; Dixon & Christoff, 2012; Shenhav,

Botvinick, & Cohen, 2013).

Following the decision to engage cognitive control, the opportu-

nity to earn a reward can also influence the efficacy of implementing

control processes. In one study, participants performed a modified

Stroop task during which they decided whether an image was a build-

ing or a house and had to ignore letters overlaid on the images

(Padmala & Pessoa, 2011). The letters could be neutral (XXXXX), con-

gruent with the image (e.g., HOUSE printed over a house image), or

incongruent (e.g., BLDNG printed over a house image). Pretrial cues

indicated whether monetary rewards were available or not available,

and participants could only earn rewards if performance was fast and

accurate. The results demonstrated enhanced implementation of cog-

nitive control, manifested as reduced interference effects on incon-

gruent trials when rewards were available (Padmala & Pessoa, 2011).

This incentive effect may reflect a sharpening of the representation of

task-relevant information (Etzel, Cole, Zacks, Kay, & Braver, 2015;

Histed, Pasupathy, & Miller, 2009), thus providing more effective

modulation of sensorimotor processes that support performance.

Incentive-based facilitation of behavioral performance has been

reported across numerous studies using a range of cognitive control

paradigms (Chiew & Braver, 2013, 2014; Chiew, Stanek, & Adcock,

2016; Dixon & Christoff, 2012; Etzel et al., 2015; Ivanov et al., 2012;

Jimura, Locke, & Braver, 2010; Krebs, Boehler, Roberts, Song, &

Woldorff, 2012; Locke & Braver, 2008; Padmala & Pessoa, 2011;

Taylor et al., 2004).

3 | THE NEURAL BASIS OF MOTIVATIONAL
EFFECTS ON COGNITIVE CONTROL

Functional neuroimaging studies have identified brain regions associ-

ated with the influence of motivation on the implementation of cogni-

tive control (Bahlmann, Aarts, & D'Esposito, 2015; Beck, Locke,

Savine, Jimura, & Braver, 2010; Engelmann, Damaraju, Padmala, &

Pessoa, 2009; Gilbert & Fiez, 2004; Ivanov et al., 2012; Kouneiher,

Charron, & Koechlin, 2009; Locke & Braver, 2008; Padmala & Pessoa,

2011; Pochon et al., 2002; Rowe, Eckstein, Braver, & Owen, 2008;

Taylor et al., 2004). In one study, Jimura et al. (2010) used a Sternberg

task with two types of task blocks. One block consisted of only nonre-

ward trials, whereas the other block consisted of trials with varying

outcomes: no reward, low reward ($0.25), or high reward ($0.75). On

each trial, participants were presented with a five-word memory set

and then had to indicate whether a subsequent probe word matched

one of the items in the memory set. The results demonstrated a shift

from transient to sustained activation in lateral prefrontal and parietal
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cortices during reward versus no reward blocks, and individual differ-

ences in reward sensitivity correlated with the magnitude of sustained

activation in reward contexts (Jimura et al., 2010).

These results can be interpreted in terms of the dual mechanisms

of control (DMC) framework, which suggests that reward incentives

shift the type and timing of cognitive control (Braver, 2012; Chiew &

Braver, 2013; Jimura et al., 2010). This theory posits two temporally

defined cognitive control mechanisms: (a) a proactive mechanism con-

sisting of sustained activation of task-relevant information (e.g., task

rules) across trials, which facilitates the encoding of new information

on each trial and the preparation of a target response and (b) a reactive

mechanism consisting of the stimulus-triggered transient re-activation

of rule information on a trial-by-trial basis. Frontoparietal activation

dynamics support the idea that reward incentives lead to greater reli-

ance on proactive control, consistent with the DMC model.

Numerous studies have now observed elevated frontoparietal

activation when cognitive control is performed in the service of

obtaining rewarding outcomes (Boehler, Schevernels, Hopf, Stoppel, &

Krebs, 2014; Engelmann et al., 2009; Gilbert & Fiez, 2004; Ivanov

et al., 2012; Kouneiher et al., 2009; Locke & Braver, 2008; Padmala &

Pessoa, 2011; Paschke et al., 2015; Pochon et al., 2002; Rowe et al.,

2008; Soutschek, Stelzel, Paschke, Walter, & Schubert, 2015; Taylor

et al., 2004). In addition, frontoparietal regions encode associations

between specific rules and expected reward outcomes (Dixon &

Christoff, 2012), exhibit more differentiated coding of task rules on

incentivized trials (Etzel et al., 2015), and are sensitive to the interac-

tion between control level and reward availability (Bahlmann et al.,

2015; Ivanov et al., 2012; Padmala & Pessoa, 2011; Soutschek et al.,

2015). These regions are also recruited during value-based decision-

making, and when participants plan and monitor progress toward

future desired outcomes (Crockett et al., 2013; Dixon, Fox, &

Christoff, 2014a; Gerlach, Spreng, Madore, & Schacter, 2014; Jimura,

Chushak, & Braver, 2013; McClure, Laibson, Loewenstein, & Cohen,

2004). Finally, single-cell recordings in nonhuman primates have

revealed reward-contingent enhancement of lateral PFC neural firing

related to working memory and task rules (Histed et al., 2009; Leon &

Shadlen, 1999; Watanabe, 1996; Watanabe & Sakagami, 2007). Thus,

frontoparietal regions may integrate task-relevant information and

expected motivational outcomes (Dixon & Christoff, 2014; Pessoa,

2008; Watanabe, 2017; Watanabe & Sakagami, 2007).

4 | THE CURRENT META-ANALYSIS

Although numerous studies of motivated cognitive control have

reported activation in frontoparietal regions, the consistency of acti-

vations across these studies has yet to be systematically examined.

The present study sought to characterize the network of brain regions

that are consistently recruited during motivated cognitive control. To

this end, we used a quantitative approach, activation likelihood esti-

mation (ALE), to identify regions that show consistent recruitment in

human neuroimaging studies of cognitive control that included a

manipulation of reward incentive availability. Meta-analyses are criti-

cal for identifying generalizable associations between cognitive pro-

cesses and brain activation patterns, because it is not possible to

control for all extraneous variables and isolate a specific cognitive pro-

cess in a single study (Yarkoni, Poldrack, Van Essen, & Wager, 2010).

In addition, the small sample sizes of typical functional magnetic reso-

nance imaging (fMRI) experiments mean that statistical analyses are

susceptible to false positives (Yarkoni et al., 2010). A meta-analysis

combines a set of studies that ostensibly tap a common cognitive pro-

cess yet differ in specific task details and thereby provides strong

inferences about brain-cognition mappings. We additionally used

Neurosynth to identify regions that are consistently recruited in stud-

ies that use the term “cognitive control” and in studies that use the

term “incentive.” Regions that are recruited by both domains may

bridge cognitive and motivational functions. While the ALE analysis

provided a conservative and rigorous analysis based on a set of care-

fully selected studies, the Neurosynth analysis provided a complemen-

tary perspective based on a liberal exploration of a much wider

literature. In addition, this analysis allowed us to compare the overall

collection of regions activated by cognitive control tasks to the subset

of regions that are sensitive to both domains. This allows for some

degree of specificity by distinguishing the regions that are important

for incentive-based modulation of cognitive control from those that

play a more general role in control-related functions. Finally, we per-

formed two additional exploratory ALE analyses to examine activa-

tions separately during cue and target periods. During cue periods,

participants are presented with information about task rules for

responding to stimuli and expected payoffs. This period thus allows

for preparatory construction rule-outcome associations in service of

proactive control engagement. During target periods, participants

respond to stimuli and must mobilize appropriate viscero-motor states

to facilitate faster and more accurate actions when a reward is on the

line. This analysis allowed us to examine the extent to which cue and

target periods rely on similar versus distinct brain systems.

5 | MATERIALS AND METHODS

5.1 | Search strategy

We conducted a literature search through PubMed and Google

Scholar to identify peer-reviewed neuroimaging studies that have

investigated motivated cognitive control. We began by searching the

key terms “fMRI” AND (“reward” OR “motivation”) AND (“cognitive

control” OR “executive function” OR “working memory”). We then

read the abstract of each paper to confirm or reject it as a candidate

study for inclusion in the meta-analysis. We only focused on activa-

tions, because there are very few deactivations reported in the litera-

ture. In addition we focused on the effect of reward, because only a

few studies have looked at the effect of punishment. To be included

in the analysis, studies had to fulfill the following criteria: (a) employ

fMRI and report resulting activation coordinates; (b) include a cogni-

tive control task (e.g., Stroop) with a manipulation of motivational

incentive (i.e., reward versus no reward, or high versus low reward

conditions); (c) include healthy adult human participants; and d) report

results from a whole-brain analysis. Several studies of motivated cog-

nitive control employed ROI-based analyses and were not included in

the meta-analysis, given that ALE requires whole-brain analyses to
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provide unbiased results. Sixteen studies were found that matched

the inclusion criteria (Table 1). The presence of reward was associated

with significantly improved behavioral performance (decreased reac-

tion time and/or increased accuracy) in all but one of the 16 studies.

5.2 | Data extraction

From these 16 studies, we collected data on sample size, task, type of

contrast (e.g., main effect of reward during task, or reward × cognitive

load interaction), task period (e.g., cue, delay, or target), and peak acti-

vation coordinates (Table 1). The meta-analysis included studies with

different types of contrasts, but each examined the neural substrates

that link motivational incentives to cognitive control. In every study,

participants were aware that they could earn reward incentives on

certain trials contingent on their task performance. Incentive informa-

tion was signaled with task cues. There were three categories of con-

trasts performed in these studies: (a) main effect of reward during a

cognitive control task; (b) conjunction effects showing overlapping

activation in relation to cognitive demands and sensitivity to reward

value; and (c) interaction between cognitive control level and

presence of incentive. While there are some differences in these three

types of contrasts, all converge on related processes that support

TABLE 1 Studies included in the meta-analysis

Study n Task Behavior Trial period Analysis Number of peak foci

Pochon et al. (2002) 6 Working memory Trial Overlap of main effects of
cognitive load and reward

10

Gilbert and Fiez (2004) 22 Working memory Acc " Delay Main effect of reward 1

Taylor et al. (2004) 10 Working memory RT # Target Main effect of reward 5

Delay Main effect of reward 6

Target Main effect of reward 3

Cognitive load x reward 1

All (collapsed) Main effect of reward 9

Locke and Braver (2008) 16 AX-CPT Acc ", RT # Block Main effect of reward 20

Rowe et al. (2008) 20 AX-CPT Acc ", RT # Block Parametric effect of reward ×
trial type

14

Engelmann et al. (2009) 20 Attentional cueing Acc " Cue Main effect of reward 20

Target Main effect of reward 10

Cue validity × reward 6

Block Main effect of reward 5

Kouneiher et al. (2009) 16 Rule-use Acc ", RT " Cue/target Trial type × reward value 3

Block Main effect of reward 3

Jimura et al. (2010) 31 Sternberg RT # Block Main effect of reward 2

Padmala and Pessoa (2011) 50 Stroop Acc ", RT # Target Main effect of reward 6

Interference × reward
interaction

10

Dixon and Christoff (2012) 15 Rule use RT # Cue Rule × reward interaction 9

Krebs et al. (2012) 14 Attentional cueing Acc ", RT # Cue Main effect of reward 13

Overlap of main effects of
difficulty and reward

10

Difficulty × reward interaction 7

Ivanov et al. (2012) 16 Flanker RT # Target Conflict × reward interaction 6

Boehler et al. (2014) 16 Stop signal RT # Target Overlap of main effects of
stopping and reward

3

Paschke et al. (2015) 115 Flanker RT # Target Congruency × reward
interaction

1

Block Overlap of main effects of task
and reward

1

Target Overlap of main effects of task
and reward

4

Soutschek et al. (2015) 20 Stroop RT # Target Main effect of reward 3

Target Congruency × expectancy ×
reward interaction

6

Etzel et al. (2015) 20 Rule-use Acc ", RT # Cue Main effect of reward 7

Total = 16 407 204

Note. When specifying the trial period, “trial” indicates reward effect across entire trial period, while “block” indicates reward effect across multiple trials.
The column behavior specifies the change in accuracy and/or reaction time (RT) on rewarded versus nonrewarded trials.
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incentive-based modulation of cognitive control. It should be noted

that we included results from the main effect of reward during task

performance (e.g., during delay or target periods) but excluded results

related to a main effect of reward during cue periods that only

included the expected reward incentive, as this is likely to mainly cap-

ture reward processing alone, without an interaction with cognitive

processes. Notably, if the cue period signaled motivational informa-

tion and cognitive task demands (e.g., rules) that could be activated in

a preparatory manner, then we included these foci.

Studies have repeatedly shown that responses are faster and/or

more accurate on reward versus no reward trials during cognitive con-

trol tasks. While both types of trials involve control demands, the

enhanced behavioral performance on reward trials indicate that the

reward incentive is processed in a manner that facilitates control

operations and the top-down modulation of action selection. Indeed,

prior work suggests that on reward trials, there is a change in how

task information is represented in the brain (Etzel et al., 2015; Histed

et al., 2009; Watanabe, 1996). There is also documented evidence of

a sustained change in activation within brain regions that are sensitive

to control demands on reward versus no-reward trials (Jimura et al.,

2010; Locke & Braver, 2008). Therefore, a main effect of reward in

the context of engaging cognitive control-related functions is captur-

ing something unique that goes beyond general reward processing in

the absence of control demands. Supporting this idea, lateral fronto-

parietal regions are rarely engaged in simple reward tasks that do not

involve control demands, yet are robustly engaged during reward trials

in the context of a cognitive control task. In addition, studies that use

conjunction analyses target the neural basis of incentive-based modu-

lation of cognitive control by identifying regions that are sensitive to

task demands, and from these regions, identifying those that are also

sensitive to reward value. The reported regions may contribute to the

process whereby control demands become associated with expected

reward outcomes.

For studies that had multiple periods (e.g., delay, probe), we

included foci from each period; however, if a given brain region was

activated in multiple periods, it was only included once in the meta-

analysis. However, for the additional analyses that separately exam-

ined cue period and target period activations, we used all available

foci. We based target- and cue-specific analyses on the results

reported in each study. If a study reported that their task design

allowed for separation of cue and target effects and reported results

for one or both task phases then the foci were included in our meta-

analysis. Given that not all studies had separate cue and target

periods, this resulted in a smaller sample size for these analyses.

5.3 | ALE meta-analytic data analysis

We analyzed the activation coordinates using a random effects meta-

analysis, ALE (Eickhoff et al., 2009; Eickhoff, Bzdok, Laird, Kurth, &

Fox, 2012; Laird et al., 2005; Turkeltaub et al., 2012) implemented

with GingerALE 2.3.6 software (UT Health Science Center Research

Imaging Institute, San Antonio, TX). This is the updated version of Gin-

gerALE that has fixed the error related to cluster-level FWE correction

(Eickhoff, Laird, Fox, Lancaster, & Fox, 2017). Coordinates reported in

Talairach space were first converted to MNI space using Ginger ALE's

foci converter function: Talairach to MNI (SPM). ALE models the

uncertainty in localization of activation foci across studies using

Gaussian probability density distributions. The voxel-wise union of

these distributions yields the ALE value, a voxel-wise estimate of the

likelihood of activation, given the input data. The algorithm aims at

identifying significantly overlapping clusters of activation between

studies. ALE treats activation foci from single studies as 3D Gaussian

probability distributions to compensate for spatial uncertainty. The

width of these distributions was statistically determined based on

empirical data for between subject and between template variability

(Eickhoff et al., 2009). In addition, studies were weighted according to

sample size, reflecting the idea that large sample sizes more likely

reflect a true localization. This is implemented in terms of a widening

Gaussian distribution with lower sample sizes and a smaller Gaussian

distribution (and thus a stronger impact on ALE scores) with larger

sample sizes (Eickhoff et al., 2009). Modeled activation maps for each

study were generated by combining the probabilities of all activation

foci for each voxel (Turkeltaub et al., 2012). These ALE scores were

then compared to an ALE null distribution (Eickhoff et al., 2012) in

which the same number of activation foci was randomly relocated and

restricted by a gray matter probability map (Evans, Kamber, Collins, &

MacDonald, 1994). Spatial associations between experiments were

treated as random while the distribution of foci within an experiment

was treated as fixed. Thereby random effects inference focuses on

significant convergence of foci between studies rather than conver-

gence within one study. The ALE scores from the actual meta-analysis

were then tested against the ALE scores obtained under this null-

distribution yielding a p-value based on the proportion of equal or

higher random values. For the main ALE analysis, we used a cluster-

forming threshold at the voxel level of p < .001 and a cluster-level

threshold of p < .05 FWE corrected for multiple comparisons. We also

ran separate analyses on foci from the cue period and foci from the

target period. Given that fewer studies were included in each analysis,

we used a more liberal p < .001, uncorrected threshold, with a mini-

mum cluster size of 200 mm3. As such, the results should be inter-

preted with caution. Results were visualized with MRIcron software

(Rorden, Karnath, & Bonilha, 2007).

5.4 | Neurosynth meta-analyses

The main ALE analysis was based on a carefully selected group of

studies and used a strict statistical threshold to control for false posi-

tives. Accordingly, it likely captures true regions underlying motivated

cognitive control. On the other hand, it may overlook some regions

that are below threshold, but nevertheless play a role in functions that

contribute to motivated cognitive control. Thus, we also utilized an

alternative, complementary approach: Neurosynth forward inference

meta-analyses (Yarkoni, Poldrack, Nichols, Van Essen, & Wager,

2011). Neurosynth makes it possible to examine consistent activation

patterns across a massive database of studies, providing strong power

to detect regions that are activated in the studies of interest. In this

way, Neurosynth is less likely to miss relevant regions. However, Neu-

rosynth performs an automated selection of studies based on certain

key words (e.g., “cognitive control”) and therefore has less specificity

in terms of delineating a select group of studies. In this way,
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Neurosynth analyses provide a complementary approach to ALE ana-

lyses. To perform such automated meta-analyses, Neurosynth divides

the entire database of coordinates into two sets: those that occur in

articles containing a particular term and those that do not. A large-

scale meta-analysis is then performed comparing the coordinates

reported for studies with and without the term of interest. Forward

inference maps reflect z-scores corresponding to the likelihood that

each voxel will activate if a study uses a particular term (P[Activation|

Term]) and are corrected for multiple comparisons using a false dis-

covery rate (FDR) of q = .01. Here, we conducted forward inference

meta-analyses using the terms “cognitive control” and “incentive” and

looked for brain areas demonstrating overlapping recruitment across

both domains. We reasoned that if a brain region is activated in stud-

ies of cognitive control and is activated in studies of incentive proces-

sing, then it is a good candidate for bridging cognitive and

motivational functions. We used forward inference rather than

reverse inference analyses because we were not looking for regions

that are selective to incentive processing or cognitive control, but

rather, are just involved in these domains. In other words, we were

not looking to identify functional specialization in any regions. Our

aim was to identify the constellation of regions that together support

motivated cognitive control. Given this aim, forward inference ana-

lyses were ideal.

6 | RESULTS

6.1 | ALE meta-analysis: All foci

We first performed an analysis on all foci to identify regions that con-

sistently demonstrate increased activation during cognitive control

when rewards are available versus not available. The ALE analysis

revealed four large clusters (Figure 1; Table 2). These right-lateralized

regions included the inferior frontal sulcus (IFS) extending into the

mid-dorsolateral PFC (mid-DLPFC), mid-intraparietal sulcus (mid-IPS)

extending into the anterior inferior parietal lobule (aIPL), anterior

insula, and the anterior mid-cingulate cortex (aMCC) extending into

the adjacent pre-supplementary motor area (pre-SMA).

6.2 | Neurosynth meta-analyses

Although the strict inclusion criteria in the ALE analysis offer confi-

dence that the identified regions do play a key role in motivated cog-

nitive control, it is possible that this conservative analysis may

overlook other relevant regions. Thus, as a complementary analysis,

we used Neurosynth to identify regions that are consistently activated

in studies that use the term “cognitive control” (N = 428 studies) and

in studies that use the term “incentive” (N = 109 studies). We focused

on brain areas demonstrating overlapping recruitment across these

domains and may play a role in linking control demands to motiva-

tional outcomes. Notably, the regions demonstrating this pattern

included all of the regions identified in the ALE meta-analysis

(Figure 2). This analysis additionally identified homologous regions in

the left hemisphere, as well as the right rostrolateral prefrontal cortex

(RLPFC), bilateral inferior frontal junction (IFJ) and pre-motor cortex

(PMC), bilateral caudate nucleus extending into the nucleus accum-

bens (NAcc), bilateral medial thalamus, and bilateral hippocampus

(Figure 2). Interestingly, the regions that were sensitive to both cogni-

tive control and incentive were a select subset of the regions engaged

during cognitive control. This finding provides some preliminary evi-

dence regarding specificity and functional differences across the cog-

nitive control network. It suggests that only some regions within this

broader network may facilitate the effect of reward-incentives on

cognitive control performance.

FIGURE 1 Whole-brain ALE meta-analytic results (p < .05 FWE corrected) showing brain regions that are consistently recruited across studies

(N = 16) of motivated cognitive control. These results indicate that regions associated with the frontoparietal control network (IFS and IPS/aIPL)
and regions associated with the salience network (insula and aMCC/pre-SMA) show greater activation during cognitive control tasks on trials in
which a reward incentive can be earned based on performance, versus trials in which no incentive is presented. Numbers denote z-coordinates in
MNI space. IFS, inferior frontal sulcus; IPS/aIPL, intraparietal sulcus/anterior inferior parietal lobule; aMCC/pre-SMA, anterior mid-cingulate
cortex/pre-supplementary motor area [Color figure can be viewed at wileyonlinelibrary.com]
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6.3 | ALE meta-analyses: Cue and target period foci

In our final analysis, we examined similarities and differences in

neural recruitment during cue and target periods. Given that these

analyses were based on a limited number of studies and a more

lenient statistical threshold, these results should be viewed as

exploratory. The brain regions that were consistently recruited dur-

ing the cue period and may contribute to the proactive engagement

of value-modulated control signals included the right IFJ/PMC, left

ventral IPS, bilateral caudate, right dorsal posterior cingulate cortex

(PCC), right midbrain near the ventral tegmental area (VTA), and left

medial thalamus (Figure 3). On the other hand, the brain regions

that were consistently recruited during the target period and may

contribute to the mobilization of viscero-motor processes during

action selection, included the right anterior insula, right aMCC,

right IPS/aIPL, right medial thalamus, left ventral IPS, and left IFJ

(Figure 3). The only region common to both trial events was the left

ventral IPS, suggesting that value-based modulation of control pro-

cesses during cue and target periods may rely on largely distinct

neural systems. However, this is a tentative conclusion, tempered

by the low power of these analyses.

7 | DISCUSSION

Cognitive control is often enhanced when rewards are contingent on

performance. This enhancement manifests as faster and more accu-

rate responses and is often accompanied by elevated brain activation

in numerous cortical regions. Here, we sought to characterize the

brain regions that reliably demonstrate this pattern and may support

incentive-based behavioral improvements in cognitive control. Using

quantitative ALE and Neurosynth meta-analyses, we identified a

select constellation of multimodal association cortices and subcortical

regions known to play key roles in cognitive and motivational proces-

sing. An exploratory analysis also revealed differences in recruitment

during cue versus target periods, suggesting partially distinct systems

may underlie the proactive engagement of control versus the mobili-

zation of viscero-motor states that support action execution.

Several regions were implicated in both the ALE and Neurosynth

analyses including the IFS, intraparietal sulcus (IPS)/anterior inferior

parietal lobule (aIPL), anterior mid-cingulate cortex (aMCC)/pre-

supplementary motor area (pre-SMA), and anterior insula. The fact

that similar results were obtained with different analysis criteria

FIGURE 2 Rendered surface display of Neurosynth forward inference meta-analyses using the terms “cognitive control” and “incentive,”
corrected for multiple comparisons using a false discovery rate of q = .01. While a broad network of regions is consistently activated in studies of
cognitive control, only a subset of these regions are also recruited in studies of incentive processing, and may play a role in motivated cognitive
control. This finding corroborates the ALE analysis, but also reveals a number of additional regions in the left hemisphere and subcortical
structures. IFS, inferior frontal sulcus; IFJ, inferior frontal junction; PMC, premotor cortex; IPS, intraparietal sulcus; DLPFC, dorsolateral prefrontal
cortex; aMCC/pre-SMA, anterior mid-cingulate cortex/pre-supplementary motor area; NAcc, nucleus accumbens [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Significant ALE clusters showing consistent recruitment in studies of motivated cognitive control

Region Cluster size (mm3) Peak ALE value Weighted peak foci in MNI space (x,y,z)

R IFS/mid-dorsolateral prefrontal cortex 2032 0.0252 40, 32, 22

R anterior insula 1,560 0.0168 38, 20, −2

R intraparietal sulcus/inferior parietal lobule 1,544 0.0213 39, −53, 45

R anterior mid-cingulate cortex/pre-supplementary motor area 1,288 0.0172 10, 20, 40

Note. L, left; R, right; DLPFC, dorsolateral prefrontal cortex.
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provides strong evidence that these regions are centrally involved in

value-based modulation of cognitive control. Interestingly, the Neuro-

synth analysis revealed that only a subset of regions engaged during

cognitive control are also engaged during reward processing. For

example, the posterior middle temporal gyrus and parts of the lateral

prefrontal and parietal cortices only demonstrated consistent recruit-

ment during cognitive control. This suggests that there may be a

select group of regions including the IFS, IPS/aIPL, aMCC/pre-SMA,

and insula that integrate control demands and expected outcomes.

The aforementioned regions have well-established roles in support-

ing cognitive control and adaptive behavior via top-down modulation of

sensory and motor processing (Cole et al., 2014; Dosenbach et al., 2006;

Duncan, 2010; Miller & Cohen, 2001). The IFS and IPS/aIPL are part of

the FPCN (Dixon et al., 2018; Power et al., 2011; Spreng et al., 2010;

Vincent et al., 2008; Yeo et al., 2011) and contribute to working memory

and the flexible representation of task rules (Badre & D'Esposito, 2009;

Brass, Derrfuss, Forstmann, & von Cramon, 2005; Bunge, 2004; De

Baene, Kuhn, & Brass, 2011; Derrfuss, Brass, Neumann, & von Cramon,

2005; Dixon & Christoff, 2012; Dumontheil, Thompson, & Duncan,

2011; Koechlin et al., 2003; Wallis, Anderson, & Miller, 2001). Neurons

in these regions exhibit dynamic coding properties, signaling any cur-

rently relevant information (Duncan, 2010; Stokes et al., 2013), and rap-

idly updating their pattern of global functional connectivity according to

task demands (Cole et al., 2013; Fornito, Harrison, Zalesky, & Simons,

2012; Gao & Lin, 2012; Spreng et al., 2010). One possibility is that ele-

vated activation during motivated cognitive control reflects an amplifica-

tion and sharpening of task information (e.g., rules) as a result of

modulatory inputs from reward processing regions (Cohen et al., 2002;

Etzel et al., 2015; Histed et al., 2009; Kouneiher et al., 2009). It could also

reflect a shift in the temporal dynamics of cognitive control, toward a

proactive mode of control (Braver, 2012; Jimura et al., 2010). When per-

formance needs to be fast and accurate to procure a reward, FPCN

regions exhibit greater sustained activation and reduced transient/reac-

tive activation, ostensibly reflecting the active maintenance of task rules

across trials (Braver, 2012; Jimura et al., 2010).

Several lines of evidence suggest that FPCN regions may play an

integrative role, directly representing control demands in relation to

expected outcomes. First, Dixon and Christoff (2012) found that the

FPCN flexibly represented trial-to-trial shifts in the association between

specific task rules and expected reward outcomes (Dixon & Christoff,

2012). This finding is consistent with the fact that FPCN neurons encode

not only rule information but also experienced and expected reward and

punishment (Matsumoto, Suzuki, & Tanaka, 2003; Pan, Sawa, Tsuda,

Tsukada, & Sakagami, 2008; Wallis & Miller, 2003; Watanabe, Hikosaka,

Sakagami, & Shirakawa, 2002)(Abe & Lee, 2011; Asaad & Eskandar,

2011; Hikosaka et al., 2000; Histed et al., 2009; Hosokawa & Watanabe,

2012; Kennerley & Wallis, 2009; Kim, Hwang, & Lee, 2008; Klein,

Deaner, & Platt, 2008; Kobayashi et al., 2006; Platt & Glimcher, 1999;

Seo, Barraclough, & Lee, 2007; Watanabe, 1996; Watanabe et al., 2002).

Second, McGuire and Botvinick (2010) found that the lateral PFC sig-

naled the cost of exerting cognitive effort, suggesting that the FPCN

plays a role in linking control demands to other parameters that are

important for deciding when to implement control. In fact, numerous

studies have demonstrated FPCN activation during value-based

decision-making (Christopoulos, Tobler, Bossaerts, Dolan, & Schultz,

2009; Diekhof & Gruber, 2010; Gianotti et al., 2009; Huettel, Song, &

McCarthy, 2005; Hutcherson, Plassmann, Gross, & Rangel, 2012; Jimura

et al., 2013; Jimura & Poldrack, 2012; Lebreton et al., 2013; McClure

et al., 2004; Plassmann, O'Doherty, & Rangel, 2007; Plassmann,

O'Doherty, & Rangel, 2010; Tanaka et al., 2004; Tobler, Christopoulos,

O'Doherty, Dolan, & Schultz, 2009; Vickery, Chun, & Lee, 2011; Weber &

Huettel, 2008). Third, several studies have shown an interaction between

control level and reward expectancy in the FPCN (Bahlmann et al., 2015;

Ivanov et al., 2012; Padmala & Pessoa, 2011). Finally, disruption of the

FIGURE 3 Significant ALE meta-analytic clusters associated with different trial periods during motivated cognitive control tasks (p < .001

uncorrected). The warm colors demonstrate regions that are consistently recruited during the cue period of motivated cognitive control tasks and
may contribute to proactive control functions, whereas the cool colors demonstrate regions that are consistently recruited during the target
(response) period of motivated cognitive control tasks and may contribute to reactive control functions. IPS/aIPL, intraparietal sulcus/anterior
inferior parietal lobule; vIPS, ventral intraparietal sulcus; dPCC, dorsal posterior cingulate cortex; aMCC, anterior mid-cingulate cortex; IFJ, inferior
frontal junction; PMC, pre-motor cortex [Color figure can be viewed at wileyonlinelibrary.com]
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FPCN—via transcranial magnetic stimulation or due to a lesion—disrupts

value processing and leads to altered motivation (Camus et al., 2009;

Essex, Clinton, Wonderley, & Zald, 2012; Paradiso, Chemerinski, Yazici,

Tartaro, & Robinson, 1999; Zamboni, Huey, Krueger, Nichelli, & Grafman,

2008). Together, these findings suggest that the FPCN may play an inte-

grative role, serving as a bridge between control demands and motiva-

tional outcomes (Dixon et al., 2017; Dixon & Christoff, 2014; Pessoa,

2008; Watanabe, 2017; Watanabe & Sakagami, 2007). In particular the

FPCN may encode rule-outcome associations, specifying the likely

reward or punishment to expect if a given set of task rules are employed

or not employed.

Our meta-analytic results also revealed that the anterior insula

and anterior mid-cingulate cortex play key roles in motivated cognitive

control. These regions are part of the “salience network” (Menon &

Uddin, 2010; Seeley et al., 2007). The insula has a well-established

role in interoception—the representation of internal bodily signals

including pain, temperature, respiratory and cardiac sensations (Craig,

2002; Critchley & Harrison, 2013; Critchley, Wiens, Rotshtein,

Ohman, & Dolan, 2004; Farb, Segal, & Anderson, 2012). This region is

also activated during a variety of goal-directed tasks (Dixon et al.,

2014a; Dosenbach et al., 2006; Duncan, 2010; Farb et al., 2012), sug-

gesting that it may serve as a nexus between the FPCN and other

interoceptive regions, allowing viscero-somatic signals to become

integrated with task goals (Dixon et al., 2014a; Farb et al., 2012;

Jezzini, Caruana, Stoianov, Gallese, & Rizzolatti, 2012). While the

aMCC has long been associated cognitive control, there is also a

growing understanding of its role in motivational processes. One pro-

posal is that the aMCC plays a role in determining the value of imple-

menting control (Shenhav et al., 2013). The idea is that the aMCC

contributes to a cost–benefit analysis based on an integration of vari-

ous signals (e.g., effort, expected reward magnitude) which then influ-

ences the decision of whether it is worth engaging control during a

given task, as well as just how much control to exert. Another per-

spective is that the aMCC plays a role in linking reinforcement to spe-

cific actions (i.e., represents action-outcome associations) (Camille,

Tsuchida, & Fellows, 2011; Dixon et al., 2017; Rushworth, Behrens,

Rudebeck, & Walton, 2007). Both proposals align with evidence that

the aMCC is well connected to the motor system (Morecraft & Tanji,

2009), is sensitive to the effort costs of actions (Croxson, Walton,

O'Reilly, Behrens, & Rushworth, 2009; Kurniawan, Guitart-Masip,

Dayan, & Dolan, 2013; Shidara & Richmond, 2002), and links actions

to expected rewards and punishment (Alexander & Brown, 2011; Pro-

cyk et al., 2014; Rushworth et al., 2007; Shackman et al., 2011). The

aMCC and insula may represent information about expected out-

comes and task-related signals throughout different phases of a trial

and contribute to anticipatory control processes including the prepa-

ration of rules (Denny, Ochsner, Weber, & Wager, 2014; Dosenbach

et al., 2006; Knutson & Greer, 2008; Sridharan, Levitin, & Menon,

2008). Interestingly, we found that the anterior insula and aMCC were

specifically recruited during the target rather than cue period of moti-

vated cognitive control tasks, which suggests that they may be espe-

cially important for target-period control processes that allow for the

efficient selection of task-relevant actions. One possibility is that

these regions provide an interface that supports the translation of

abstract task representations into more concrete body states

(autonomic activity and action plans) related to the initiation of goal-

directed behavior (Dixon et al., 2017; Farb et al., 2012; Shackman

et al., 2011). This idea aligns with prior work demonstrating the

involvement of these regions in autonomic arousal (Medford &

Critchley, 2010), response competition (Botvinick et al., 2001;

Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999; MacDonald 3rd,

Cohen, Stenger, & Carter, 2000) and the activation of motor programs

(Gaymard et al., 1998; Jezzini et al., 2012; Stuss et al., 2005; Turken &

Swick, 1999).

The Neurosynth analysis also highlighted the caudate nucleus

extending into the NAcc, while the cue period ALE analysis

highlighted the caudate and the midbrain near the VTA. These regions

are part of a dopaminergic midbrain-striatal circuit that signals predic-

tion errors when there is a discrepancy between expected and actual

rewards (Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008; Monta-

gue, Dayan, & Sejnowski, 1996; O'Doherty et al., 2004; Schultz,

Dayan, & Montague, 1997). Moreover, neurons in this circuit gradually

shift the timing of maximal firing from actual outcomes to reward-

predictive cues (Schultz et al., 1997). These regions play a fundamen-

tal role in goal-directed behavior via biasing action selection based on

the anticipation of imminent rewards and the opportunity to exercise

choice (Knutson, Adams, Fong, & Hommer, 2001; Leotti & Delgado,

2014). Accordingly, this circuit may play a role in broadcasting pre-

dicted cue values to other systems involved in constructing rule-

outcome associations, and modulating viscero-motor processing.

Indeed, prior work has outlined detailed models of how the dopami-

nergic midbrain-striatal circuit serves a gating function that

strengthens or destabilizes current working memory contents depend-

ing on task demands (Cohen et al., 2002; Cools, 2016; Hazy, Frank, &

O'Reilly, 2006). Specifically, tonic dopamine in the PFC is thought to

enhance the stability of working memory content via increased signal

to noise ratio (that is, boosting the strength of local recurrent activity

versus stimulus-evoked activity). On the other hand, phasic dopamine

is thought to serve as a gating signal, allowing working memory to be

updated based on reward-predicting events (Cohen et al., 2002;

Cools, 2016; Hazy et al., 2006).

While the present work focused on identifying regions that are

consistently activated during motivated cognitive control, it will be

important for future work to characterize the functional interactions

between these regions, and modulatory influences on other brain sys-

tems (e.g., sensory and motor systems). Functional connectivity and

effective connectivity refer to the identification of undirected and

directed functional coupling patterns, respectively (Friston, 2011), and

provide a method for probing the nature of interactions between

brain regions and making inferences about information flow across

the network, and how that shapes task-related activation patterns

(Cole, Ito, Bassett, & Schultz, 2016). In addition, it is possible to exam-

ine how regional interactions change as a function of task context

using psychophysiological interactions among other methods (Smith,

Gseir, Speer, & Delgado, 2016). This is particularly relevant for under-

standing the neural basis of cognitive control, which is thought to rely

on distributed interactions among brain systems and the top-down

modulation of task-specific processing via frontoparietal regions

(Egner & Hirsch, 2005; Miller & Cohen, 2001). Indeed, recent work

has shown that lateral frontal and parietal regions exhibit flexible,
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task-dependent coupling patterns with other regions (Braun et al.,

2015; Fornito et al., 2012; Smith et al., 2016; Spreng et al., 2010). To

understand motivated cognitive control, it will be critical to under-

stand the nature of interactions between the FPCN, salience network,

and midbrain-striatal circuits.

A few limitations of the current findings should be noted. First,

our meta-analyses were based on peak coordinates and therefore do

not include the full extent of data present in raw statistical maps.

Image-based meta-analyses that combine raw (unthresholded) statisti-

cal maps may provide additional information, particularly concerning

small but reliable effects and relative deactivation patterns

(Gorgolewski et al., 2015). A second limitation is that our analysis was

based on studies that employed a number of different cognitive con-

trol tasks and functions. One the one hand, this suggests that the

identified brain regions support motivated cognitive control in a gen-

eral sense and are not tied to any particular task. On the other hand,

this may obscure the delineation of neural systems that link expected

outcomes to different types of executive control. As more studies

examine this topic, future work may be able to discern whether incen-

tive effects on different aspects of cognitive control (e.g., response

inhibition versus working memory updating) have similar or distinct

neural substrates. We were also unable to examine the effect of pun-

ishment on cognitive control given the small number of fMRI studies

on this topic. Given that the observed frontoparietal regions have

been shown to encode information about aversive outcomes in addi-

tion to rewarding outcomes (Asaad & Eskandar, 2011; Kobayashi

et al., 2006), it is possible that substantial overlap with the current

findings would be observed. However, there is some indication in

prior work that differences may also appear (Paschke et al., 2015).

Future studies may also be able to provide a more in-depth analysis of

brain regions showing incentive effects during specific trial periods

(e.g., cue versus delay and target processing). Our results were based

on a small number of studies and should be seen as preliminary. Given

that we found evidence of distinct brain regions involved in cue ver-

sus target periods, this may be a key area for future inquiry to investi-

gate. Another important dimension of motivated cognitive control is

incentive type (i.e., primary versus secondary). However, all studies

included in this review operationalized motivation with monetary

(i.e., secondary) incentives with the exception of Beck et al. (2010).

This study compared the effects of primary (juice) and secondary

(money) rewards on performance in a Sternberg task. The authors

found no significant differences in behavioral improvement between

the reward types but did find both regional and temporal differences

in brain activation patterns. This underscores the importance of study-

ing the different types of incentive effects separately. Another limita-

tion is that the Neurosynth analysis may have identified regions that

play a general role in processing reward information as opposed to

incentive processing more specifically. However, the primary ALE

analysis was based on studies in which reward was contingent on per-

formance, suggesting that the regions identified in both analyses are

likely to be specifically involved in mechanisms that underlie moti-

vated cognitive control. With a growing number of studies in this area,

it may be possible for future work to disentangle general and specific

reward effects in a large sample of studies that can be meta-analyzed

with Neurosynth. Finally, our analyses were based on regions that

were recruited in the relevant studies as a function of BOLD signal

magnitude. It remains possible that we missed regions that would be

identified using other analysis approaches (e.g., multivariate pattern

analysis, or the effect of incentives on the sharpness of rule encoding

as in the study by Etzel et al., 2015).

To summarize, the current findings reveal a select constellation of

brain regions that are consistently recruited in studies of motivated

cognitive control. Flexible interactions between frontoparietal,

salience, and dopaminergic midbrain-striatal networks may underlie

the dynamic process by which control signals are precisely tailored

based on expected outcomes.
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