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It is not currently known whether subjects can learn to voluntarily

control activation in localized regions of their own brain using

neuroimaging. Here, we show that subjects were able to learn enhanced

voluntary control over task-specific activation in a chosen target

region, the somatomotor cortex. During an imagined manual action

task, subjects were provided with continuous direction regarding their

cognitive processes. Subjects received feedback information about their

current level of activation in a target region of interest (ROI) derived

using real-time functional magnetic resonance imaging (rtfMRI), and

they received automatically-adjusted instructions for the level of

activation to achieve. Information was provided both as continously

upated graphs and using a simple virtual reality interface that provided

an image analog of the level of activation. Through training, subjects

achieved an enhancement in their control over brain activation that

was anatomically specific to the target ROI, the somatomotor cortex.

The enhancement took place when rtfMRI-based training was

provided, but not in a control group that received similar training

without rtfMRI information, showing that the effect was not due to

conventional, practice-based neural plasticity alone. Following train-

ing, using cognitive processes alone subjects could volitionally induce

fMRI activation in the somatomotor cortex that was comparable in

magnitude to the activation observed during actual movement. The

trained subjects increased fMRI activation without muscle tensing, and

were able to continue to control brain activation even when real-time

fMRI information was no longer provided. These results show that

rtfMRI information can be used to direct cognitive processes, and that

subjects are able to learn volitionally regulate activation in an

anatomically-targeted brain region, surpassing the task-driven activa-

tion present before training.
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Introduction

Neuroimaging methods allow observation of the patterns of

activation in localized brain regions during cognitive tasks (Jezzard

et al., 2001; Raichle and Posner, 1994). The level of brain

activation produced by particular tasks can be modulated in the

short term by cognitive processes such as attention (Brefczynski

and DeYoe, 1999; deCharms and Zador, 2000; Culham et al.,

2001), and in the long term by mechanisms of learning and

plasticity (Karni et al., 1995; Poldrack, 2000; Sanes and Donog-

hue, 2000). This suggests the possibility that given appropriate

training, subjects may be able to learn to voluntarily control brain

activation in spatially localized regions that are associated with

specific functions. However, the degree of control that subjects

might learn to exert has not previously been thoroughly explored,

as appropriate techniques have only become available with the

advent of neuroimaging. It has been documented over many years

that subjects can be trained to regulate autonomic functions and

less spatially localized measures of brain activation such as EEG

activity or EEG spectrum (Lubar and Deering, 1981; Nowlis and

Kamiya, 1970). Studies of physiological regulation using ‘biofeed-

back’ have been limited by available techniques to autonomic and

comparatively global physiological measures such as heart rate,

skin temperature, skin conductance, EMG, and EEG that reflect

comparatively global physiological processes, and thus these

methods have been used extensively in training of relaxation and

the level of global attention or arousal (Schwartz, 1995). Using

neuroimaging, it is possible for the first time to investigate the

control that can be exerted over specific, localized neurophysio-

logical and cognitive processes located anywhere within the brain.

We use the term ‘neurodirected behavior’ to designate the

process of controlling stimuli, task parameters, or subjects behavior

based upon localized brain activation. This work represents the first

full study in a group of subjects trained to alter brain activation

using information derived from rtfMRI (Cox et al., 1995; Gembris

et al., 2000; Lee et al., 1998; Posse et al., 2001; Voyvodic, 1999).

Several previous feasibility studies have demonstrated the potential

for the use of methods of this type. In one prior report, subjects

performed movement trials, and fMRI data were analyzed offline,
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and approximately 20 s after the completion of each trial the

computed results were presented to the subjects to demonstrate that

subjects may be able to learn to select appropriate movements to

activate a target brain area (Yoo and Jolesz, 2002). An additional

study measured single-trial rtfMRI responses in the amygdala and

presented this information to subjects while they performed a self-

induced sadness task (Posse et al., 2003). That study demonstrated

the feasibility of presenting real-time fMRI information to subjects

being scanned, but it did not attempt to explore any activation

changes that might be specifically induced by real-time fMRI

training, since the fMRI information and the cognitive task of

self-induced sadness were always presented together. That report

also did not explore whether real-time fMRI information could be

used in training subjects to volitionally control brain activation

beyond the brain activation initially produced by performing the

cognitive task employed. Most recently, an additional study pre-

sented technology for allowing fMRI data to be analyzed in real

time with results presented to the subject. This study demonstrated

the viability of the technology in a single subject undergoing

training (Weiskopf et al., 2002, 2003). We anticipate vigorous

future work in this area.

Performance information plays a critical role in guiding many

types of learning that have been investigated in humans (Herzog

and Fahle, 1997; Kawashima et al., 2000), animals (Brainard and

Doupe, 2000; Ito, 2000; Lisberger, 1988), and computer algorithms

(Rumelhart et al., 1986; Grossberg, 1987, #152). During typical

skill learning, proprioceptive or other perceptual feedback informa-

tion is available to guide the learning of the subject. These forms of

feedback, however, have not been available to guide learning for

cognitive actions that do not have outward physical manifestations,

such as imagined actions or mental imagery. Real-time fMRI may

be beneficial for guiding the learning of control over specific brain

activation and cognitive processes. fMRI could, in principle,

provide feedback information for the training of mental processes

that lack physical manifestation, or for the conditioning of the level

of brain activation in localized regions. If subjects can be trained to

control the level of activation in localized brain regions, this has

implications for the extent to which top–down processes can

regulate activation during the performance of tasks.

The present study employed a task of imagined manual actions

because this type of task lacks a source of overt perceptual

feedback and offers a well-characterized locus of brain activation

in somatomotor cortex. Overt hand movement behaviors lead to

clear, robust, and well-understood activations. The strong activa-

tion observed during overt movement can serve as a benchmark for

comparison with activations observed during imagined manual

action both before and after rtfMRI-directed training. Early PET

studies of imagined actions or motor imagery reported activations

in higher-order motor areas, such as supplementary motor cortex,

lateral premotor cortex, and cerebellum, for both imagined and

actual actions (e.g., Roland et al., 1980). Imagined actions,

however, were reported to fail to activate primary somatomotor

regions. Some fMRI studies have reported activation of primary

somatomotor cortex for imagined actions, perhaps benefiting from

greater measurement sesnsitivity, but the activation reported is

typically less than a third as great as that measured for actual

movement (Porro et al., 1996) or is seen in only a subset of

subjects (Stephan et al., 1995). Therefore, it is possible that

subjects may be able to learn to increase the level of activation

during imagined movement to more closely match the robust

activation observed during overt movement.
Here, subjects performed an imagined hand movement task,

where no form of proprioceptive or performance feedback could

normally be made available. Subjects were provided with nearly

immediate feedback information about the level of activation in the

somatomotor cortex, derived in real time from fMRI. The activa-

tions that subjects achieved during imagined hand movement before

training were compared with the activations that they achieved after

training, and also compared with the strong activations produced

during actual movement. Finally, the increase in activation seen

using this form of training was compared with changes observe in a

control group of subjects that underwent repeated training on the

same task but with sham fMRI information, to control for any

effects of plasticity due to repeated practice alone.
Methods

Familiarization pretraining

Experimental procedures are outlined in Fig. 1. Before begin-

ning scanning, subjects spent an hour performing real and imag-

ined tasks involving exercise or mental rehearsal of exercises of the

dominant right hand. These included real and imagined finger

tapping, flexion–extension, pronation–supination, abduction–ad-

duction, and opposition of digits. It was explained to subjects that

during scanning, they would be instructed to imagine hand move-

ments while attempting to optimize their strategy to increase

activation in a brain area involved in this cognitive process, and

that they would receive ongoing information about the level of

activation that they were producing in this brain area.

Imaging procedures

fMRI scanning was conducted using a 3.0T GE Signa scanner at

the Lucas Center for Magnetic Resonance Spectroscopy and Imag-

ing at Stanford University. Saggital T1 localizer scans were collect-

ed, and 16 axial, high-resolution T1-weighted anatomical scans were

collected for anatomical localization (256� 256 voxels, 0.86mm in-

plane resolution, 7 mm thick). fMRI data were then collected co-

planar with these anatomical sections. fMRI used a spiral T2* pulse

sequence (TR 1 s, TE 30 ms, flip angle 70) (Glover, 1999). Sixteen

axial slices (64 � 64 voxels, 3.43 mm2 in-plane resolution, 7 mm

thick) were prescribed parallel to the anterior–posterior commis-

sures (defined using sagittal T1 localizer scans) and collected using a

volume head coil. Subject head movement was minimized with a

bite bar. The functional activation signals measured here are changes

inmeasured T2*-weighted intensity, and are presented as percentage

of signal change from the session average (blood oxygen level-

dependent signal, or BOLD activation).

Real-time data analysis

Real-time data analysis was performed using custom software

that performed k-space to image space spiral reconstruction, and

subsequent processing of time-series image data. This analysis

included continuous measurement of the average level of activation

in spatially defined regions of interest within a single plane of

section, followed by bandpass temporal filtering of this data (0.1–

120 s pass band) to produce a continuous scrolling chart of the time

course of activation in the ROI during the preceding 100-s period.

This ROI analysis was also performed for a large background



Fig. 1. Outline of training, testing, and scanning procedures. (A) Subjects received preliminary familiarization with the task outside the scanner, followed by

three training runs and one post-test run inside the scanner. The first nine mental rehearsal blocks attempted by the subject (the first half of the first training

session) served as the pretraining data set, and the first and second nine blocks of the post-test run, performed in the presence and absence of real-time fMRI

information, served as two post-training data sets. (B) Each 20.5-min run consisted of 18 mental rehearsal blocks and two blocks of overt movement (the first

and last block of each session), which provide comparison data.
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region of interest. The difference between the average activation in

the target ROI and the background ROI was also computed and

presented as a scrolling chart. In addition, analyses were made to

compare the level of activation during task periods vs. the

immediately preceding rest periods, each shifted in time by 5 s

to reflect hemodynamic delay. Continuously updated real-time

difference maps were computed as the average percentage of signal

difference for task vs. rest blocks measured for each voxel, and

these images were used blocks to guide ROI selection. An index

was computed that was the average activation within the ROI for

each task block minus the activation during the immediately

preceded background block shifted by 5 s, and these data were

continuously updated and presented. In addition, event-related

averages of the average level of activation at each time point

through all 60 s within a block were continuously computed and

presented. All of this information could be made available to both

the experimentalist and the subject, although in practice, subjects

were instructed to view the scrolling chart of activation in the ROI,

the background ROI, and the difference. In additon, subjects

viewed a simple virtual reality interface that represented the level

of brain activation using a corresponding dynamic virtual object.

This was provided because some subjects preferred viewing an

amusing visual image in addtion to information presented as a

graph. As an example, a 2D video image of an Olympic weight

lifter was presented in a graphical window. As brain activation

increased, the weight lifter raised a weight from the ground to over

his head; as activation decreased, the weight lifter put the weight

back down again.

We use ‘real-time’ fMRI to mean imaging where all data analysis

proceeds sufficiently rapidly to keep pace with data acquisition. It

should be noted that rtfMRI signals have a number of inherent

delays. The processing of data requires about 2 s, and the biolog-

ically inherent hemodynamic response delay requires about 2 s to
arise and about 4–6 s to reach its peak value after neural activation,

as was explained to subjects. These signals also contain significant

noise arising both from imaging hardware and from physiological

sources, so the statistical reliability of data inherently increases

through time. The software used here is able to fully reconstruct

spiral fMRI data and perform all computations to produce activation

maps, scrolling activation chart plots, event-related averages, and

trial averages while keeping pace with new data acquisition, lagging

the collection of original data by 1–2 s. Data collected here were 16

slices � 64 � 64 voxels/TR, and lag times were <2 s. Speed and

reliability statistics presented were recomputed in post hoc analysis.

ROI definition

Regions of interest were defined physiologically by creating a

real-time map of the area activated by repeated vigorous tapping of

the contralateral, dominant hand index finger. Subjects alternated

30-s blocks of index finger tapping with 30-s blocks of rest, and

maps of the voxel-wise percentage of signal difference between

these two conditions were generated and superimposed upon high-

resolution T1 anatomical images. ROIs were selected as rectangu-

lar zones centered on the area of activation on the margins of the

central sulcus, which was visualized anatomically. The selected

regions of interest were deliberately large, 10 � 10 voxels/35 � 35

mm in a single plane of section, to minimize any potential effects

of subject movement. The background ROI used in real-time

training was selected to assess average activation over the majority

of the selected plane of section in which the target ROI was

chosen. Detailed placement of a background ROI encompassing a

particular set of anatomical structures or involving gray–white

matter segmentation was not feasible during a real-time experi-

ment, and the use of a large ROI covering the plane of section

including the target ROI proved adequate. Post hoc tests indicated
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that ROI placement was accurate, and typically reproduced across

training sessions within subjects to within less than 1–2 voxels of

error (mean error 0.6 F 0.15 voxels). The mean location across

subjects in Talairach Tournoux coordinates for the center of the

selected ROIs (x = �38.6 L, y = �16.16 P, z = 46 S),

corresponding to precentral sulcus, Brodmann area 4, and the

mean ROI also including Brodmann area 3 (Moore et al., 2000;

Talairach and Tournoux, 1988). Individual-subject ROI center

locations were 3.0–9.8 mm in 3D position from the group mean.
Subject training

Once ROIs had been selected, subjects were engaged in three

training sessions of performing an imagined manual action task, as

outlined in Fig. 1. Subjects were instructed that during the task

blocks they were to imagine moving their dominant (right) hand so

as to increase the level of activation that they observed in the ROI,

as they were instructed in the pretraining session. Subjects were

presented with a continuously updated time-course plot of the

preceding ROI activation in an ROI placed to include somatomotor

cortex, as well as a large background ROI taken from the same

slice, and a measure of the difference between the two. Time

course plots were used because they were found to be more readily

interpreted by subjects than other measures, such as continuously

updated two-dimensional activation map images. Subjects were

also instructed that to the extent possible they were to focus their

attention specifically on imagining hand movements, and to avoid

deliberate changes in their global arousal that might lead to

changes in activation in broad areas of the brain, which might be

indicated by changes in activation of the large background ROI

that they also observed.

Each training session encompassed 20 blocks that were each

made up of a 30-s rest period followed by a 30-s task period.

During the first and last block of each session, subjects performed

actual repetitive tapping movements of the index finger of the

contralateral hand as instructed by behavioral software; these data

were later used as positive control measures for benchmarking.

During all other blocks, subjects were instructed to refrain from

any movement and maintain all muscles in a relaxed posture while

imagining movement of the dominant hand. Lack of overt move-

ment during the imagined movement task was verified by obser-

vation of the subjects, by post-scanning interview, and by EMG

that was measured during the task inside the scanner using surface

electrodes placed on the extensor carpi radialis longus muscle, or

the extensor digitorum muscle in 2 subjects.

Before each block, each subject was presented with a target level

of activation that the subject was instructed to attempt to achieve

during that block. Following the block, a task activation measure of

the observed average activation in the ROI during the task block

minus the preceding background block, each shifted by 5 s to reflect

hemodynamic delay, was computed and presented to subjects.

Subjects were informed whether they had succeeded in achieving

the target level of activation during the block. The target level of

ROI activation that the subject was directed to achieve on the next

block was then computed based on a method of adaptively tracking

the required task difficulty to match the subject’s preceding ROI

activation performance, adopted from standard psychophysical

methodology (Leek et al., 1992). The target performance level

was adjusted based on current performance using 3 up 1 down

tracking methodology. If subjects achieved the target level or
greater on average during the task block for three blocks in a row

then the threshold was raised (task made harder); if they failed to

achieve the threshold for one block the threshold was lowered (task

made easier). In post-processing, this same task activation measure

was averaged within subjects for each block of 18 imagined-action

blocks, and then averaged across subjects. Nine normal right-

handed subjects participated (age range 19–36 years). Six were

in the experimental group, three were in the sham control group.

One of the nine participants was from the experimental team (this

was not one of the examples shown in the figures).

To determine whether observed effects were due to subjects

learning to volitionally control brain activation by using real-time

fMRI information, control subjects were trained using an identical

training paradigm, but with sham fMRI information. For sham

training, subjects performed an identical training sequence, and

performed this sequence inside the scanner while receiving infor-

mation that appeared very similar. However, without their knowl-

edge, they were being presented with sham brain activation

information that was not correlated with the task being performed,

and had no relation to their behavior. This information was real

fMRI data collected from the same subject, but from a background

ROI and at an earlier time in the same recording session. It

therefore served as an essentially random signal, but with similar

fluctuations and other signal characteristics to the information that

was seen by the subjects who were receiving actual rtfMRI

information.

Offline data analysis

Offline data analysis and verification was performed using

Brain Voyager and SPM99 and confirmed activations observed

during training. Analysis was hypothesis-driven, rather than ex-

ploratory, and therefore focused on activations in the ROI that was

individually selected for each subject and used in training. Time-

series image data were motion corrected, and statistical parametric

maps were computed for statistical significance of activation

assessed by a t test (t value) comparing activation for each voxel

during the task blocks to background blocks, shifted by 5 s for

hemodynamic delay, corrected for multiple comparisons using the

Bonferroni method, and a threshold t = 10. Hypothesis-driven ROI

analysis were repeated using the same ROIs that had been

employed during subject training inside the scanner.
Results

Through the course of training, subjects were able to enhance

the level of fMRI activation driven by imagined action, and this

enhancement was spatially selective to the somatomotor ROI that

was the target of training. This enhancement could be seen at the

single-subject and group levels. Before training, there was a small

but significant activation anterior to the central sulcus during

imagined action, shown for an example subject (Fig. 2A). Follow-

ing training, imagined action led to a significantly larger activation

within the target ROI, in both presumed motor and somatosensory

zones anterior and posterior to the central sulcus (Fig. 2B). The

enhancement of activation following training is sufficiently robust

to be apparent without block averaging or smoothing in single-

subject, single-trial data (Figs. 3A and B). The activation in the

somatomotor cortical region was the largest activation in each of the

six subjects studied after training. Additional, smaller modulations



Fig. 2. Somatomotor activation before and after training. (A) BOLD activation during a right-hand imagined-action task before and (B) after training.

Statistically significant activation pattern is superimposed upon a T1-weighted anatomical image with the right side of each image corresponding to the left

hemisphere (radiological convention). The blue box designates the selected region of interest. The scale on the far right designates the statistical significance by

t test (t value) comparing activation for each voxel during the task blocks to background blocks, shifted by 5 s for hemodynamic delay, corrected for multiple

comparisons using the Bonferroni method, with threshold t z 10; both images to same scale.

Fig. 3. Temporal progression of activation during imagined action task

before and after training. (A) Average value within the ROI for a single

subject at successive measurement points (TRs), expressed as percentage

change from the mean for the entire period before training and (B) after

training. No spatial or temporal averaging or filtering was used. Group

event-related average time course of activation driven by the task before

training (C) and after training (D) using data from the before testing and after

testing periods indicated in Fig. 1. The period of the increase activation

block is indicated by the horizontal line, 30 s. The percentage of signal

change in the ROI for each time point is averaged across blocks, then

averaged across all subjects. Magnitude of signals reflect volume averaging

over the ROI; the signal change in strongly activated voxels reached 3–5%.

(E) EMG data measured concurrently with data in (B), followed by EMG

data from an immediately following period of finger tapping, shown in blue.
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associated with performing this complex task were observed in

ipsilateral cerebellum, occipital, and frontal regions and varied

among subjects.

Concurrently measured EMG (Fig. 3E) showed no indication

of muscle contraction during mental rehearsal (Fig. 3B), suggest-

ing that this increase in activation was not due to actual move-

ments or muscle tensing. There was no increase in average

magnitude of the RMS EMG signal between the initial training

task periods (0.12 mV) and the final training task periods (0.053

mV), and in fact a moderate decrease was observed. Nor was there

any increase in RMS EMG signal between background periods in

the final session (0.055 mV) and the mental imagery task periods

(0.053 mV). However, a strong EMG signal was evident during a

control period of overt movement (Fig. 3E), which had an RMS

EMG of 0.36 mV.

Group statistics were performed on activation measured from

the individually selected ROIs, and showed that training enhanced

the observed ROI activation significantly. Group event-related

averages of the time course of activation in the region of interest

aligned to each task start were computed for all study participants

and showed a clear increase from before training (Fig. 3C) to after

training (Fig. 3D). A task activation measure (ROI activation

during task–rest) was derived from each block for each subject

and averaged across subjects. There was a clear monotonic

increase in task-driven activation over successive training periods

[Fig. 4A, F(2,10) = 5.87, P < 0.02, repeated-measures ANOVA].

The effect was regionally selective, rather than reflecting

general arousal or other widespread effects. In post hoc analysis,

activation in the target ROI was compared with whole brain data

for consistency. There was no increase observed when measuring

the entire brain (Fig. 4B). The increase measured in the ROI was

significantly greater than for the whole brain [F(2,10) = 52, P <

0.0001, two-way repeated-measures ANOVA on interaction]. In

addition, a comparison was made with an ROI placed in a

comparable position to the target ROI but ipsilateral to the task

being performed. In this case, there was a slight but not statistically



Fig. 4. Group statistics of increase in task-driven activation in target ROI

with training. (A) Average percentage of signal change in the ROI during

the task period relative to the background period during each of three

successive training sessions. (B) Activation measures from the entire brain

for the same three periods. The activation measure was computed for all

voxels inside the skull on 16 sections spanning cortex to brainstem. (C)

Average percentage of signal change in the ROI for the sham training

control group. (D) Task-driven activation during performance of overt

motor task by the experimental group (left) and the control group (right).

(E) Average activation in the ROI for the experimental group during a post-

test session with real-time fMRI information available (left) or withheld

(right). Error bars indicate standard error across subjects. No spatial

smoothing or normalization was used, ROI data was bandpass-filtered from

120 s�1 (double the repeat length) to 0.1 s�1.
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significant increase in activation in the ipsilateral background ROI

[F(2,10) = 1.5, P > 0.25, repeated-measures ANOVA], possibly

reflective of partial activation of contralateral somatomotor cortex

induced by functional connectivity.

An important issue was whether the enhancement in ROI

activation was dependent on voluntary control over brain activa-

tion learned by subjects as a result of training using rtfMRI, or

whether these effects would have occurred as a natural conse-

quence of plasticity due to other aspects of repeating the task. In a

subject-blind control experiment, a second group of subjects

underwent an identical period of conventional behavioral practice,

also taking place within the scanner under identical conditions, but

without valid rtfMRI information. These participants were given

sham information that did not correspond to their fMRI activation.

This control could suffer from the possibility that subjects might be

confused by sham fMRI information. When questioned following

training, subjects did not indicate that they were aware that the

information presented had not been valid. The sham-feedback

control subjects started out with a similar level of activation in

the target somatomotor ROI, but did not show an increase in

activation following practice (Fig. 4C). The increase in the exper-

imental group was significantly greater than that for the sham

control group [F(2,18) = 5.0, P < 0.02, two-way repeated-measures

ANOVA]. Thus, the observed learning required rtfMRI-based

feedback training and was not due to other aspects of repeated

practice.

The magnitude of ROI activation that subjects were able to

produce during imagined hand movement observed following

training was compared with the activation measured in the same

subjects during overt movement of the hand contralateral to the
recorded ROI (Fig. 4D). Following the limited period of training

used in this study, the activation that subjects were able to produce

due to imagined movement had more than doubled (Fig. 4A, right

bar), and had nearly reached the activation seen for overt move-

ment (the difference between the two was 13%, and was not

statistically significant P > 0.1). In the sham training group after

training, the activation produced by imagined movement (Fig. 4C,

right bar) was much lower than that observed during overt

movement (Fig. 4D, striped bar, P < 0.005). The fact that the

sham control group showed strong activation during overt move-

ment serves as a positive control, confirming that fMRI measure-

ments were sound, and that the ROI selected was properly placed

to detect activation driven by behaviors involving the contralateral

hand. These findings show that training effects were sufficiently

robust that after training subjects could produce a similar level of

activation during imagined manual action compared with real

movement.

A final test examined whether the subject’s ability to voluntarily

control activation in a localized brain area, once learned, would be

sustained in the absence of further rtfMRI information. During a

post-training test session conducted inside the scanner, the same

subjects previously trained using rtfMRI information (same group

as shown in Fig. 4A) were again instructed to perform the same

imagined movement task while rtfMRI information was presented

to them, repeating and verifying the initial finding, and then they

were instructed to perform the imagined movement task while

fMRI information was withheld. Once they had been trained using

rtfMRI information, subjects could activate the ROI either with or

without real-time fMRI information (Fig. 4E, both conditions in 4E

were greater than before training in 4A, left bar, P < 0.05). This

suggests that once they have learned to control a specific brain

region during a task using rtfMRI, subjects can continue to use this

learned ability without further direction. It is likely that this learned

ability would be sustained outside of the scanner, although this

could not be directly tested.
Discussion

These experiments demonstrate that given appropriate direc-

tion, practice, and rtfMRI information, subjects can learn to

substantially enhance activation in an anatomically targeted brain

region during the performance of a specific task. Learning studies

have previously used subject’s observed motor performance as a

source of feedback to guide improvement, while here, information

from neuroimaging was used to guide learning of increased brain

activation during repeated training using an imagined task where

external feedback regarding motor behavior was not possible.

Following learning, subjects were able to activate the somatomotor

cortex during imagined action to an extent similar to the robust

activation observed during an overt motor action.

The observed increase in activation through training presum-

ably arose as subjects learned to modify attention, strategy, or other

cognitive processes based upon the information that they received

to achieve greater activation of the targeted brain region, and then

may have further improved as subjects continued to practice these

behaviors. This study extends the literature examining somatomo-

tor cortical activation for imagined, visually observed, and learned

actions (Fadiga et al., 1999; Fourneret et al., 2002; Pascual-Leone

et al., 1995; van den Bos and Jeannerod, 2002), which has shown

absent or substantially reduced activation in primary cortex for
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imagined relative to actual movements (Deiber et al., 1998;

Jeannerod, 1995; Nilsson et al., 2000; Porro et al., 1996; Roland

et al., 1980). Why might one expect enhanced activation in

somatomotor cortex in the absence of overt movement? While

primary motor neurons within motor cortex directly effect move-

ments, the majority of the total neuronal population in somatomo-

tor cortex do not serve this role. Somotomotor cortex can increase

its activation in the absence of overt movement or muscle tensing.

We observed a small activation in somatomotor cortex during

imagined actions before training, and a significantly greater acti-

vation following real-time fMRI-based training.

The majority of functional neuroimaging experiments have

involved measurement of the activation of brain regions brought

about by the presentation of stimuli, or by top–down processes

such as attention, mental imagery, or motor tasks (Jezzard et al.,

2001; Raichle and Posner, 1994). However, it has not previously

been determined whether through training using real-time neuro-

imaging, subjects can learn to exert additional, volitional control

during task performance. Our study, which was able to employ

real-time neuroimaging, has shown that subjects can use cognitive

strategies to control a target brain region in real time.

This study introduces the new behavioral method of neuro-

directed behavior, and thereby raises a number of important

questions for future research. It will be valuable to determine the

extent of voluntary control over different brain regions that sub-

jects can achieve, as well as to understand the types of strategies

that they employ to engage particular brain regions. This study

used training with a region of interest that included both gray and

white matter and included presumed primary somatosensory and

motor cortex and their immediately surrounding areas. Future

studies may examine the spatial specificity of control that is

achievable. By focusing on what strategies subjects employ to

activate individual brain areas, the neurodirection methodology

may prove useful in delineating the functional roles of different

brain regions. Also, it will be valuable to determine the neural and

vascular mechanisms underlying voluntary regulation of measured

brain activation. This study used a method analogous to operant (or

instrumental) conditioning (Skinner, 1938). It is also possible to

explore modes of conditioning based upon neurodirected behavior

that are analogous to classical conditioning paradigms (Pavlov,

1927).

It will be interesting for future studies to compare the efficacy

of different training methods that lead to increased brain activation

in detail. The sham feedback control used in this study was

designed to address the question of whether subjects can use

information derived from neuroimaging regarding activation in a

target brain region to learn to control that brain activation. This

initial study did not attempt to compare training with rtfMRI

feedback to extended training with no feedback, leaving this

substantial additional undertaking for future research. Traditional

behavioral plasticity paradigms typically involve repeated training

over many more sessions than were provided here (Merzenich and

deCharms, 1996), and the most relevant comparison will be

between traditional long-term training with no behavioral feedback

and training employing neuroimaging information carried out over

a similarly long time period. It will be important to compare in

parallel the time course of increases in brain activation observed

using multiple training methods, each conducted inside of a

scanner so that the physical settings are identical and so that

parallel measurements in brain activation may be observed, requir-

ing substantial scan resources.
In addition to the effects on the activation of brain regions,

future research may also delineate the potential impact of increased

activation on perception or behavior. In this study, the subjects

performed an imagined action task, so performance measures

could not be made. The current data cannot therefore address

potential changes in behavior that may accompany changes in

brain activation.

The activation of brain regions subserving particular behavioral

or physiological functions may lead to enhancement of those

functions, either in normal subjects or in patient populations. As

the methods available to measure localized brain activation continue

to progress, the use of neurodirection to influence behavior or to

regulate specific brain processes may have a number of areas of

applications such as behavioral training, and as a novel means of

targeted, noninvasive intervention in central nervous system disease.
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