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Abstract—Investigation of the neural basis of self-generated

thought is moving beyond a simple identification with

default network activation toward a more comprehensive

view recognizing the role of the frontoparietal control net-

work and other areas. A major task ahead is to unravel the

functional roles and temporal dynamics of the widely dis-

tributed brain regions recruited during self-generated

thought. We argue that various other neuroscientific meth-

ods – including lesion studies, human intracranial electro-

physiology, and manipulation of neurochemistry – have

much to contribute to this project. These diverse data have

yet to be synthesized with the growing understanding of

self-generated thought gained from neuroimaging, however.

Here, we highlight several areas of ongoing inquiry and

illustrate how evidence from other methodologies corrobo-

rates, complements, and clarifies findings from functional

neuroimaging. Each methodology has particular strengths:

functional neuroimaging reveals much about the variety of

brain areas and networks reliably recruited. Lesion studies

point to regions critical to generating and consciously expe-

riencing self-generated thought. Human intracranial electro-

physiology illuminates how and where in the brain thought

is generated and where this activity subsequently spreads.

Finally, measurement and manipulation of neurotransmitter

and hormone levels can clarify what kind of neurochemical

milieu drives or facilitates self-generated cognition. Integrat-

ing evidence from multiple complementary modalities will

be a critical step on the way to improving our understanding

of the neurobiology of functional and dysfunctional forms of
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INTRODUCTION: INVESTIGATING THE
WANDERING BRAIN

One of the most intriguing yet least understood aspects of

the human mind is its tendency toward ceaseless activity

– a quality famously described by William James as the

‘stream of consciousness’ (James, 1892). This tendency

of the mind to drift from one thought to another has

recently sparked interest among cognitive neuroscientists

and led to a growing body of neuroscientific investigations

of mind-wandering, stimulus-independent thought,

http://dx.doi.org/10.1016/j.neuroscience.2016.08.020
mailto:kfox@psych.ubc.ca
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Fig. 1. The breadth of self-generated thought recruitment (green

clusters) juxtaposed with the default mode network (blue borders)

and frontoparietal control network (red borders).Cortical mapping of

significant meta-analytic clusters associated with mind-wandering

and related self-generated thought processes (green clusters) juxta-

posed with outlines of the default mode network (blue) and the

frontoparietal control network (red). Note that self-generated thought

activations overlap considerably with both networks, but also include

regions beyond both networks (highlighted in Fig. 1). Default mode

network and frontoparietal control network masks based on Yeo et al.

(2011). Reproduced with permission from Fox et al. (2015). (For

interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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daydreaming, and task-unrelated thought (Mason et al.,

2007; Christoff et al., 2009; Andrews-Hanna et al., 2010;

Christoff, 2012; Axelrod et al., 2015). This interest is well

warranted, given that these kinds of thought appear to

account for as much as 30–50% of our waking thinking

(Kane et al., 2007; Killingsworth and Gilbert, 2010). These

various forms of undirected cognition represent a subset

of a broader collection of processes referred to as ‘‘self-

generated thought,” defined as ‘‘mental contents that

are not derived directly from immediate perceptual input”

(Smallwood and Schooler, 2015; Smallwood, 2013).

Self-generated thoughts can arise spontaneously or

deliberately, and their contents can be task-related or

task-unrelated, as long as they arise relatively indepen-

dently of immediate perceptual inputs. In this respect,

emotions, mental imagery, and arguably even interocep-

tive signals from within the body (e.g., sensations from

the stomach) can also be considered self-generated.

From the first-person perspective, self-generated

thought involves a staggering variety of

phenomenological content, including memory recall,

future planning, mentalizing, simulation of hypothetical

scenarios, and a wide variety of emotions and imagery

from various sensory modalities (reviewed in Andrews-

Hanna, 2012; Fox et al., 2013, 2014; Klinger, 2008;

Smallwood and Schooler, 2015). Self-generated thought

extends well beyond mind-wandering and daydreaming,

however: self-generated mental activity is intimately

involved in artistic (Ellamil et al., 2012) and scientific cre-

ativity (Maquet and Ruby, 2004), insight problem-solving

(Kounios and Beeman, 2014), and dreaming (Fox et al.,

2013; Domhoff and Fox, 2015). Self-generated thought

is also relevant to numerous clinical, neurological, and

psychiatric conditions in which typical patterns of thought

are altered or exaggerated (Andrews-Hanna et al., 2014),

such as depressive rumination (DuPre and Spreng, in

press), Alzheimer’s disease and dementia (Irish et al.,

2012), post-traumatic stress disorder (Ehlers et al.,

2004), and attention deficit/hyperactivity disorder (Shaw

and Giambra, 1993).

Developing a comprehensive understanding of the

neurobiology of self-generated thought is therefore of

relevance to many fields of inquiry, from psychology to

psychiatry.

Early cognitive neuroscience research recognized and

emphasized the importance of the default mode network

(DMN) to self-generated thought (Gusnard et al., 2001;

Raichle et al., 2001), but this earlier viewpoint is now giv-

ing way to a broader but also more nuanced understand-

ing. Our recent quantitative meta-analytic treatment of the

neural basis of self-generated thought, for instance,

revealed no fewer than a dozen regions that appear to

be consistently involved, both within and beyond the

DMN (Fox et al., 2015). The most salient activations were

found in the default network (including medial and rostro-

medial prefrontal cortex, posterior cingulate cortex, left

ventrolateral prefrontal cortex, and inferior parietal lobule;

Fig. 1), which has long been hypothesized to be critical to

self-generated cognition in resting states (Gusnard et al.,

2001; Raichle et al., 2001). Consistent recruitment was

also observed, however, in frontoparietal control network
regions (including dorsal anterior cingulate cortex, right

anterior inferior parietal lobule, and a cluster bordering

right rostrolateral and ventrolateral prefrontal cortices;

Fig. 1). There were further activations that fell beyond

either network, including in secondary somatosensory

cortices, the left insula, medial occipital cortex (lingual

gyrus), temporopolar cortex, and medial temporal lobe

(Fig. 1). The inherently correlational nature of functional

magnetic resonance imaging (fMRI) data, however, as

well as its relatively poor temporal resolution, make it dif-

ficult to answer deeper questions about which of these

brain regions is causally involved in generating thought,

or how the origin and subsequent spread of self-

generated thought appear at fine timescales on the order

of milliseconds (Fox et al., 2015).

In this review we aim to synthesize a diverse body of

evidence that can help begin to make sense of the role(s)

played by the widely distributed regions identified by

functional neuroimaging as important for self-generated

thought. A key theme is that different neuroscientific

modalities and methods can contribute to this project in

unique but complementary ways (Table 1). Investigation

of any higher cognitive process necessarily entails

certain challenges, but the subjectivity and

unpredictability of self-generated thought exacerbate the

difficulties of conducting rigorous, well-controlled

research, and underscore the importance of using

multiple methodologies that can compensate for each

other’s limitations. Functional neuroimaging has

provided an invaluable inroad into the field of self-

generated cognition, but understanding the

interrelationships and varied roles of the many brain

areas implicated in self-generated thought requires a

synthesis of evidence from many methodologies. Here,



Table 1. Major areas of inquiry in the neurobiology of self-generated thought

Aspect of self-

generated thought

Central questions Principal modality of investigation

Breadth and

diversity

What brain regions and networks are consistently recruited by self-

generated thought? How does the diversity of recruitment vary with the

content and type of self-generated thought?

Functional neuroimaging (fMRI and PET)

Necessary substrate What regions of the brain form the necessary (if not sufficient) neural

substrate allowing for the self-generation of thought?

Neuropsychological lesion studies;

transcranial magnetic stimulation

Origin and ontogeny How and where is thought self-generated in the brain? How do initial

patterns of activity recruit and interact with other parts of the brain?

Human intracranial electrophysiology;

magnetoencephalography

Modulation What neurochemical milieu drives or facilitates self-generated thought?

Does the neurochemistry of self-generated thought resemble that of

kindred cognitive processes such as dreaming or creative thinking?

Manipulation and measurement of

neurotransmitter and neuromodulator

levels

Systems biology What other biomolecules beyond the central nervous system affect or are

affected by self-generated thought? Are there relationships between self-

generated thought content and neuroendocrinology or other biomarkers

throughout the body?

Manipulation and measurement of

hormones and other biomolecules (e.g.,

enzymes)
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we specifically highlight contributions that can be (and

already have been) made by neuropsychological lesion

studies, human intracranial electrophysiology,

experimental manipulations of neurotransmitter levels,

and examination of hormone and other biomolecule

levels. In addition to a synthesis of existing empirical

data, we aim to propose some promising avenues for

future research, including combining multiple methods

simultaneously or in other complementary ways.
How is self-generated thought measured?

Experimentally, a key challenge to investigating the

neural correlates of self-generated thought is knowing

precisely what kind of self-generated thought is taking

place, and when in time those thoughts occur. Since

there is as yet no reliable objective indicator of attention

being absorbed in internally-generated channels of

information, cognitive neuroscientists have employed a

variety of methods to investigate the content of self-

generated thought – all of which necessarily rely on

first-person experience reports (Fox et al., 2015). Several

of the most common approaches are outlined here.

Trait questionnaires, such as the Imaginal Process

Inventory (Singer and Antrobus, 1970), can putatively

measure participants’ stable (i.e., trait) self-generated

thought tendencies, and have been correlated with

blood-oxygenation level-dependent (BOLD) activation in

fMRI studies (Mason et al., 2007). Retrospective ques-
tionnaires typically ask subjects to characterize the aver-

age content or frequency of thought during a preceding

period (Andrews-Hanna et al., 2010). Inferential assess-
ment involves examining self-reported thought during var-

ious tasks or conditions completed outside the brain

scanner. These reports are then assumed to hold for a

separate sample of subjects completing the same tasks

inside the scanner (e.g., Mason et al., 2007). Online

reports involve experience-sampling probes that interro-

gate subjects as to their thought content in real-time

(Smallwood and Schooler, 2006; Christoff et al., 2009;

Schooler et al., 2011; Ellamil et al., 2016). Online reports

can track the moment-to-moment content of thought in a
laboratory/scanner setting (Christoff et al., 2009) or in

everyday life using technologies such as smartphone

applications (Killingsworth and Gilbert, 2010). This

method appears to us to be the least problematic and to

yield the richest data: on the one hand, it avoids the pos-

sibility of memory or self-serving biases in retrospective

and questionnaire reports, respectively – and on the other

hand, it can yield a large number of distinctive thought

reports that can potentially reveal correspondingly distinc-

tive neural correlates (Ellamil et al., 2016).

Despite the obvious differences between these many

methods, impressive convergence has been noted, at

least along several basic dimensions of self-generated

thought. For instance, data gathered from

questionnaires (Diaz et al., 2013), from experience sam-

pling in everyday life (Klinger and Cox, 1987), from

thoughts reported in the fMRI scanner environment

(Ellamil et al., 2016), and from retrospective assessments

in laboratory settings (Gorgolewski et al., 2014) all agree

that visual imagery is a very prevalent component of self-

generated thought. Similarly, using a wide variety of rating

scales and measurement methods, nearly a dozen stud-

ies agree that emotion is prevalent in self-generated

thought and that it has a mild positivity bias (Fox et al.,

2014; Fox et al., in preparation).

Importantly, first steps have been taken to extend

these findings to non-Western cultures, with encouraging

results. For instance, a recent study examining the

content of mind-wandering in the daily lives of Chinese

participants (Song andWang, 2012) found ratings of affect

to be similar to those reported in numerous studies of

European and North American participants (Fox et al.,

2014; Fox et al., in preparation). The temporal orientation

of thoughts (i.e., the proportion of thoughts about the past,

present, and future, or that are ‘non-temporal’) was also

very similar to rates reported in an American sample

(Andrews-Hanna et al., 2010). Relatedly, numerous stud-

ies have reported a bias toward thoughts about the future

in participants from the United States (Baird et al., 2011),

the United Kingdom (Smallwood et al., 2009), Belgium

(Stawarczyk et al., 2011), Germany (Ruby et al., 2013),

and Japan (Iijima and Tanno, 2012). All the aforemen-
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tioned results suggest that across cultures, contexts, and

questionnaire methods, thought content can be relatively

reliably reported by participants and assessed by

experimenters.

IDENTIFYING THE NECESSARY AND
SUFFICIENT NEURAL BASIS OF

SELF-GENERATED THOUGHT: THE VALUE OF
NEUROPSYCHOLOGICAL LESION STUDIES

‘Neuropsychology’ studies the cognitive, affective, and

perceptual deficits suffered by patients with various

brain lesions. Far from merely cataloging the effects of

rare brain disorders and diseases, however, lesion

studies have shed much light on healthy brain

functioning, as well as serving as highly effective

catalysts for further research (e.g., Scoville and Milner,

1957; Luria, 1976; Solms, 1997; Gainotti, 2000; Müller

and Knight, 2006). Lesion studies can provide important

clues about the necessary and sufficient neural basis of

a given cognitive process, even a complex one like self-

generated thought (Koenigs et al., 2007). To anticipate

our conclusions, lesion work suggests that at least four

regions play critical roles in various kinds of self-

generated thought: medial prefrontal cortex, inferior pari-

etal lobule, medial occipitotemporal cortex, and medial

temporal lobe (Fig. 2).

Although we are aware of little neuropsychological

work that has directly addressed the effect of brain

lesions on self-generated thought, many studies have

addressed closely related cognitive processes. Likely

the closest parallel is the extensive neuropsychological

lesion work undertaken by Solms regarding the

necessary and sufficient neural basis of dreaming

(Solms, 1997, 2000). Solms concluded that the areas

most critical to dreaming in general are (i) the medial pre-

frontal cortex and (ii) the temporoparietal junction/inferior

parietal lobule. Additionally, a large swathe of (iii) medial

occipital cortex, centering on the lingual gyrus, is critical

for the visual features of dreaming (Solms, 1997, 2000;

Bischof and Bassetti, 2004). Elsewhere, we have argued

at length that the subjective experiences and neurophys-

iological correlates of dreaming bear a strong resem-

blance to those of waking mind-wandering and related

forms of self-generated thought (Fox et al., 2013; Fox

and Christoff, 2014; Domhoff and Fox, 2015; Christoff

et al., in press). Notably, all three regions identified by

Solms as critical to nighttime dreaming emerged as signif-

icantly activated in our meta-analysis of waking self-

generated thought (Fox et al., 2015; for a direct compar-

ison, see Fig. 2, and for further discussion see Domhoff

and Fox, 2015). Further supporting this view is the finding

that, concurrent with the global loss or reduced frequency

of dreaming, patients often reported reduced daydream-

ing and fantasy following the lesions to medial prefrontal

cortex and/or the periventricular white matter tracts at

the anterior horns of the lateral ventricles and the genu

of the corpus callosum (Frank, 1946, 1950; Piehler,

1950; Schindler, 1953). To our knowledge, these latter

few investigations are the only studies to have directly

assessed some form of waking self-generated thought
in relation to brain lesions, and unfortunately the results

are largely anecdotal. Nevertheless, overall this conver-

gence across methods (neuroimaging and lesion work;

Fig. 2) suggests that more rigorous investigations of the

quality and content of waking self-generated thought in

patients with damage to these three areas could prove

informative.

Because self-generated thought so often involves

spontaneous memory retrieval (Andrews-Hanna et al.,

2010; Fox et al., 2013), lesion work related to semantic

and autobiographical memory capacity is also relevant.

Solms’ conclusions concerning the importance of the

medial prefrontal cortex to self-generated waking and

dreaming experience are bolstered by work showing that

lesions to medial prefrontal cortex have detrimental

effects on both semantic and episodic autobiographical

memory retrieval (Philippi et al., 2014). Relatedly, it has

recently been shown that patients with lesions in the area

of the inferior parietal lobule (BA 39) report freely recalled

(i.e., self-generated) memories that are impoverished and

lacking in detail, despite exhibiting normal memory when

probed with specific questions by the experimenters

(Berryhill et al., 2007).

Another potentially critical region, largely disregarded

by Solms (1997), is (iv) the medial temporal lobe

(Domhoff and Fox, 2015). Bilateral medial temporal lobe

lesions are most famously associated with anterograde

(and limited retrograde) amnesia (Scoville and Milner,

1957; Milner et al., 1968); less well known are heavy def-

icits in dreaming that cannot simply be explained by fail-

ures of recall. For instance, Korsakoff’s syndrome

patients with bilateral medial temporal lobe damage show

a marked decrease in dream reports, even when awak-

ened directly from REM sleep in a laboratory setting

(Greenberg et al., 1968). Amnesia alone cannot explain

these findings, for at least two reasons. First, medial tem-

poral lobe patients still had some dream recall, demon-

strating that they still possessed basic recall capacities

(e.g., in one study, �25% of awakenings elicited dream

reports (Greenberg et al., 1968), vs. about 80–90% in nor-

mal subjects (Hobson et al., 2000). Second, medial tem-

poral lobe patients retain intact working/short-term

memory (Milner et al., 1968): anterograde amnesia

should not prevent them from reporting upon experiences

from just moments ago, immediately upon being awak-

ened in a sleep laboratory setting. The dreams medial

temporal lobe patients do report also support this interpre-

tation: ‘‘the content of that material which was recalled

showed very stereotyped, commonplace features and

reflected very little affect” (Greenberg et al., 1968, p.

205; emphasis added). Nor are these findings restricted

to Korsakoff’s patients: a study of encephalitis patients

with severe medial temporal lobe lesions reports identical

findings (Torda, 1969): patients reported far fewer dreams

than controls, and reports ‘‘were short and simple. . . [they]
contained one scene with recurrent repetition. . . The

dreams lacked imaginative, unusual, or mysterious details

and intensive emotions. The content was stereotyped,

repetitious. . .” (p. 280). The reduction in dream frequency

with medial temporal lobe lesions is certainly severe



Fig. 2. Neuropsychological lesion studies and meta-analysis of fMRI investigations converge on four brain structures that may be critical to self-

generated thought. The left column shows brain templates with dark areas indicating regions critical to nighttime self-generated thought (dreaming)

as determined by overlapping lesion sites based on CT scans of neurological patients – except panel g, which shows the average site of medial

temporal lobe excisions during surgery for intractable epilepsy. In the case of lesions to medial prefrontal cortex (panel a) there is evidence for

severe reduction in waking self-generated thought (daydreaming/fantasy) as well. The middle column shows meta-analytic brain activations

associated with waking daydreaming/mind-wandering. The right column shows meta-analytic brain activations associated with REM sleep, which is

nearly always accompanied by dreaming (r= .8; Hobson et al., 2000). Note that the activation cluster in panel f is somewhat anterior to the

temporoparietal junction, approximately in Brodmann area 40. All three approaches converge on four areas: the medial prefrontal cortex (panels a–

c); the temporoparietal junction/inferior parietal lobule (panels d–f); the medial temporal lobe (panels g–i); and the medial occipital lobes/lingual

gyrus (panels j–l). Panels a and d based on the work of Solms (2000a); panel j based on Solms (1997). Panels b, e, and h based on data from Fox

et al. (2015). Panel g based on average medial temporal lobe excisions for severe epilepsy patients as reviewed by Mathern and Miller (2013).

Panels c, f, and i based on data from Fox et al. (2013) and Domhoff and Fox (2015). X and Z values represent left–right and vertical coordinates,

respectively, in Montreal Neurological Institute stereotactic space. Figure expanded and modified from Domhoff and Fox (2015), with permission.
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enough to warrant further research with respect to the

effect of similar lesions on waking self-generated thought.

Several studies from recent years provide further

corroborative evidence for the importance of the medial
temporal lobe in self-generated thought processes. For

instance, medial temporal lobe patients are severely

impaired in imagining novel fictitious or future events

and experiences (Klein et al., 2002; Hassabis et al.,
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2007; Rosenbaum et al., 2009; Andelman et al., 2010;

Kwan et al., 2010; Race et al., 2011, 2013), consistent

with the activation of medial temporal lobe during such

tasks in healthy subjects (Schacter et al., 2007, 2012;

Addis et al., 2009). Medial temporal lobe lesion patients

also suffer deficits in tasks requiring creative and novel

patterns of thinking (Duff et al., 2013; Rubin et al.,

2014). Although providing only circumstantial support,

these findings are intriguing because so much of the con-

tent of self-generated thought consists of imagined future

scenarios and novel, creative recombination of prior

memories into new thoughts and simulated experiences

(Klinger, 2008; Andrews-Hanna et al., 2010; Fox et al.,

2013). Investigation of the quality and frequency of self-

generated thought in medial temporal lobe lesion patients

therefore appears to be a promising avenue for future

research.

Major limitations of the neuropsychological method

should be kept in mind, however. Lesion studies

typically involve patients with large and extremely

heterogeneous lesions owing to a variety of causes

(e.g., stroke, traumatic brain injury, etc.), making the

interpretation of such results difficult. Moreover, the

simple ‘overlap’ method used to determine consistent

lesion sites across patients, employed for instance by

Solms (1997), obviously also has its limitations. In addi-

tion, brain damage typically results in some amount of

recovery in the affected region, as well as structural and

functional plasticity and remodeling in other brain areas

in order to compensate for the deficits incurred

(Johansson and Grabowski, 1994; Robertson and

Murre, 1999; Kleim and Jones, 2008). This post-injury

plasticity, at both the lesion site and distal brain regions,

further complicates interpretations of deficits in lesion

patients.

A recently-developed complement to classic lesion

studies is transcranial magnetic stimulation (TMS),

which allows for reversible ‘lesions’ of circumscribed

brain areas by using pulsed magnetic fields to

transiently inhibit neuronal activity (Hallett, 2000).

Because TMS can in principle ‘lesion’ any cortical area

and can be used safely in healthy people, it overcomes

many of the major limitations of classic lesion studies.

Although we are not aware of any research that has

directly investigated self-generated thought with TMS,

some related work is pertinent. For example, one recent

study selectively impaired self-related memory retrieval

by applying TMS pulses to medial parietal default network

areas (Lou et al., 2004). Related work has shown that

TMS pulses to the inferior parietal lobule bilaterally, but

not to medial prefrontal cortex, disrupt the classic self-

reference effect (Lou et al., 2010). Conversely, the pro-

cess of self-evaluation has been shown to be selectively

disrupted by TMS applied to medial prefrontal cortex

(Luber et al., 2012) – potentially suggesting a double-

dissociation in terms of distinct aspects of self-related pro-

cessing across medial prefrontal and parietal areas. While

of course preliminary, these results point to the potential

power of TMS to directly target a variety of regions impli-

cated in self-generated thought and systematically

address their specific functional contributions.
DYNAMICS OF SELF-GENERATED THOUGHT:
NEURAL ORIGINS AND ONTOGENY AS
REVEALED BY HUMAN INTRACRANIAL

ELECTROPHYSIOLOGY

Neither functional neuroimaging nor lesion studies can

answer questions about the detailed, millisecond-scale

temporal dynamics of self-generated thought. Two key

questions about these temporal dynamics concern the

neuroanatomical origins and ontogeny of self-generated

thought: where in the brain do self-generated thoughts

tend to originate (there may of course be more than one

answer), and how does self-generated activity

subsequently spread through distributed neuronal

networks and give rise to the accompanying subjective

experiences of memory recall and novel thought? A

third important question centers on the dynamics of

interactions between large-scale networks, most

importantly the frontoparietal control network and DMN,

which we discuss elsewhere (Christoff et al., in press).

Human intracranial electroencephalography (iEEG)

and electrocorticography (ECoG) offer an ideal means

to investigate questions of neural origins and ontogeny

(for convenience, we will refer to all such techniques

here as iEEG). Typically, iEEG is implemented for the

assessment, diagnosis, and treatment of otherwise

intractable neurological conditions, such as epilepsy or

Parkinson’s disease (Bechtereva and Abdullaev, 2000;

Lachaux et al., 2003). Most of the data relevant to the pre-

sent review come from the study of epilepsy patients: in

an effort to identify the precise epileptogenic focus in brain

tissue, numerous electrodes can be chronically implanted

(for weeks or more) in various brain regions thought to be

involved in seizure generation (Fried et al., 2014). As the

medial temporal lobe is a common origin site for epileptic

seizures, electrodes are often implanted into deep cortical

and subcortical areas, including the amygdala, hippocam-

pus, and entorhinal cortex (Vignal et al., 2007; Gelbard-

Sagiv et al., 2008). This technique allows direct recording

of various aspects of the brain’s neuroelectric activity,

most commonly measurement of the local field potential

(i.e., extracellularly-recorded electrical potential fluctua-

tions) thought to largely reflect summation of nearby

synaptic currents in dendrites and neuron somata, and

to a lesser extent axon potential firing (Elul, 1972;

Buzsáki et al., 2012). Advances in microelectrode tech-

nology and analysis methods have also allowed for the

reconstruction of putative single-neuron spiking activity

from extracellularly recorded potentials (Gelbard-Sagiv

et al., 2008; Fried et al., 2014). When we refer to brain ‘ac-

tivity’ throughout this section, we therefore mean either

single-neuron spiking or changes in the local field poten-

tial, as measured with (micro)electrodes placed in the

extracellular matrix.

A related method involves mild electrical stimulation of

the cortical surface with (non-implanted) electrodes

during neurosurgical operations, typically undertaken in

an effort to identify and spare cortical areas critical to

motor output generally and speech in particular

(Penfield and Boldrey, 1937; Penfield and Welch, 1951;

Penfield, 1958). Alternatively, a larger grid or strip of elec-
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trodes can be placed on the cortical surface for the same

purpose, known as electrocorticography or ‘ECoG’ (Crone

et al., 2006; Buzsáki et al., 2012).

Because patients are awake and alert with both

chronic implanted microelectrodes and during epilepsy

surgeries (typically conducted under only local

anesthesia), first-person experience reports can be

collected and correlated with the location either of

stimulation or passively-recorded discharges and

increases in spiking activity. The correlation of brain

activity with subjective experience can be undertaken in

any of several ways. In some studies, patients can

simply describe their experiences in an open-ended way

as stimulation is administered to particular locations

(Penfield and Perot, 1963; Parvizi et al., 2013); in other

cases, spontaneous subjective experiences (e.g., free

memory recall or epileptic aura phenomena) can be indi-

cated by the patient, and self-generated brain activity can

then be analyzed in the time window surrounding these

subjective reports (Vignal et al., 2007; Gelbard-Sagiv

et al., 2008). Although the number of electrodes and

experiential reports is generally small for any given

patient, general principles can often be gleaned by syn-

thesizing data from large numbers of such investigations,

involving widespread electrode placement in many indi-

viduals (Penfield and Perot, 1963; Selimbeyoglu and

Parvizi, 2010; Burke et al., 2014). Here we compare

and synthesize the results of dozens of independent stud-

ies in an effort to delineate whether they provide clues to

the neural origins and subsequent ontogeny of self-

generated thought.
Fig. 3. Preferential involvement of medial temporal lobe structures and tem

discharges) eliciting memories, thoughts, or hallucinatory, dream-like expe

elicited a first-person experience of memories, thoughts, or hallucinatory

investigations. Not shown are data for hundreds of other stimulations throug

have ever been reported. Only brain areas with P 10 stimulations or discha

Table 2, based on data in Supplementary Table 1 of the comprehensive review

parietal lobule; ITG: inferior temporal gyrus; MTG: middle temporal gyrus;

temporo-occipital junction; TPC: temporopolar cortex.
Neural origins of self-generated thought

With respect to sites of origin, there may be more than

one central location of generation, or it may be that

difficult-to-localize, distributed network activity gives rise

to thoughts, and the search for ‘primary’ thought

generation regions is misguided. The reality could also

be that both mechanisms contribute, depending on the

type and content of self-generated thought. Whatever

the answers to these quandaries, the evidence for the

central role of the medial temporal lobe in thought

generation is compelling. The most direct causal

evidence comes from the ever-growing body of

cognitive studies of patients who have had brain

electrodes chronically implanted, or the cortical surface

probed with electrical stimulation, for a variety of clinical

reasons – usually intractable epilepsy. Since the first

studies of this kind nearly one hundred years ago,

essentially every brain area has been explored with

direct focal electrode stimulation, or passive recording of

spontaneous discharges, to a greater or lesser degree.

The most relevant finding from this growing body of

research is that stimulation of medial temporal lobe

structures (i.e., the hippocampus, parahippocampus,

entorhinal cortex, and amygdala) very frequently leads

to memory recall, immersive thoughts, and hallucinatory,

dream-like experiences (Fig. 3). Far from an isolated

occurrence, the accumulated evidence supporting this

assertion is fairly substantial (Feindel and Penfield,

1954; Bickford et al., 1958; Baldwin, 1960; Penfield and

Perot, 1963; Horowitz et al., 1968; Ferguson et al.,
poropolar cortex in electrophysiological stimulations (or spontaneous

riences. Percentage of stimulations or spontaneous discharges that

, dream-like experiences, based on more than 100 independent

hout the brain, for which no such thought- or dream-like experiences

rges reported in the literature are visualized. Drawn from data in our

of Selimbeyoglu and Parvizi (2010). HPC: hippocampus; IPL: inferior

PHC: parahippocampal cortex; STG: superior temporal gyrus; TOJ:
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1969; Halgren et al., 1978; Wieser, 1979; Gloor et al.,

1982; Fish et al., 1993; Bancaud et al., 1994; Kahane

et al., 2003; Barbeau et al., 2005; Vignal et al., 2007;

Mulak et al., 2008; Jacobs et al., 2012).

Equally important, however, is the specificity of these

results: a comprehensive review of cognitive-affective

findings from electrophysiological studies in humans,

summarizing the results of over 100 such studies

conducted over the past eighty years, found that such

phenomena were produced almost exclusively by

stimulation of medial temporal lobe structures

(Selimbeyoglu and Parvizi, 2010; see our summary of rel-

evant results in our Table 2). Stimulation of nearby tem-

poropolar cortex (Penfield and Perot, 1963; Halgren

et al., 1978; Bancaud et al., 1994) or lateral temporal cor-

tex (Penfield, 1958; Mullan and Penfield, 1959; Penfield

and Perot, 1963; Bancaud et al., 1994) can also elicit

such phenomena, but these reports are comparatively

rare, and moreover electrical stimulation is known to

spread to adjacent cortical areas, making it difficult to

strictly rule out a medial temporal origin (or co-

activation) in many of these cases (Gloor et al., 1982;

Gloor, 1990; Bancaud et al., 1994). Indeed, many of the

stimulations to lateral temporal cortex that elicited

thought- and dream-like experiences were reported from

electrodes at a depth of several centimeters, supporting

such a possibility (Selimbeyoglu and Parvizi, 2010). Stim-

ulation of lateral prefrontal cortex (Blanke et al., 2000a)

and orbitofrontal cortex (Mahl et al., 1964) can likewise

occasionally elicit such experiences, but such reports

are few and far between (Table 2). Most striking is that

no such experiences appear to have ever been reported
Table 2. Summary of human electrophysiology studies demonstrating elicitatio

Brain region Stimulations/

discharges

elicitinga

Total

stimulations/

discharges

Percentage

eliciting (%

Temporal lobe

Hippocampus 25 46 54

Amygdala 13 36 36

Parahippocampal region 9 16 56

Temporopolar cortex 5 11 45

Inferior temporal gyrus 1 21 5

Middle temporal gyrus 7 42 17

Superior temporal gyrus 24 99 24

Temporo-occipital junction 4 17 24

Frontal lobe

Inferior frontal gyrus 1 7 14

Middle frontal gyrus 2 8 25

Orbitofrontal cortex 1 4 25

Supplementary motor area 1 6 17

Parietal lobe

Inferior parietal lobule 2 42 .05

Based on data in Supplementary Table 1 in the comprehensive review conducted by Selimb

reported in the literature are visualized in Fig. 3.
from stimulation of virtually any other area in the brain

(Selimbeyoglu and Parvizi, 2010), even from many other

regions consistently recruited by self-generated thought

in functional neuroimaging investigations (Fig. 3). For

instance, fewer than 1% of stimulations to the inferior pari-

etal lobule elicit such phenomena (Selimbeyoglu and

Parvizi, 2010). We summarize these results in Table 2

and Fig. 3.

Although absence of evidence is not necessarily

evidence of absence, the results are intriguing given the

number of investigations already carried out and the

span of time over which such investigations have been

taking place (well over a hundred studies, over nearly a

hundred years). Together these results strongly suggest

that the medial temporal lobe is a key generation site for

many forms of self-generated thought, including

dreaming – a hypothesis that could be examined more

forcefully with lesion patients (see previous section).

A central limitation of drawing conclusions based on

this body of research is that the results were primarily

evoked by electrical stimulation – they mostly do not

represent self-generated, spontaneous brain activity

giving rise to immersive thoughts and hallucinatory,

dream-like experiences. Several studies, however, have

passively recorded spontaneous brain activity in

conjunction with first-person reports of accompanying

experience, and yielded consistent findings: the medial

temporal lobe appears to be by far the most common

origin of self-generated brain activity accompanied by

spontaneous memories, thoughts, and dream-like

experiences (Bancaud et al., 1994; Vignal et al., 2007;

Gelbard-Sagiv et al., 2008).
n of memories, thoughts, or hallucinatory, dream-like experiences

)

References

Halgren et al. (1978), Fish et al. (1993), Bancaud et al. (1994),

Kahane et al. (2003), Vignal et al. (2007), Mulak et al. (2008)

Ferguson et al. (1969), Halgren et al. (1978), Fish et al. (1993),

Vignal et al. (2007)

Feindel and Penfield (1954), Penfield and Perot (1963), Vignal

et al. (2007)

Penfield and Perot (1963), Halgren et al. (1978), Bancaud et al.

(1994), Ostrowsky et al. (2002), Mulak et al. (2008)

Penfield and Perot (1963)

Penfield (1958), Mullan and Penfield (1959), Penfield and Perot

(1963), Kahane et al. (2003)

(Mullan and Penfield (1959), Penfield and Perot (1963), Morris

et al. (1984)

Penfield and Perot (1963), Morris et al. (1984), Lee et al. (2000)

Blanke et al. (2000a)

Blanke et al. (2000a)

Mahl et al. (1964)

Beauvais et al. (2005)

Blanke et al. (2000b), Schulz et al. (2007)

eyoglu and Parvizi (2010). Data for brain areas withP 10 stimulations/discharges
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The subsequent ontogeny of self-generated thought

Even highly localized stimulation or spontaneous neural

firing will tend to spread to proximate and distant brain

areas through short- and long-range connections

(Halgren and Chauvel, 1992; Selimbeyoglu and Parvizi,

2010). Assuming that the medial temporal lobe is one of

the main sources of spontaneous neuronal activity giving

rise to thoughts and spontaneously recalled memories,

the question remains of how and on what timescale this

activity spreads, and where in the brain it is most likely

to spread to. Given that the medial temporal lobe is well

connected to nearly every other part of the brain

(Buzsáki, 1989; Rolls, 2000; Simons and Spiers, 2003;

Buzsaki, 2006), the possibilities are legion.

Our view of the role of the medial temporal lobe in

spontaneously reactivating memory traces, and in

recombining mnemic material into novel thoughts and

imaginings, draws heavily on the hippocampal indexing

theory (Teyler and DiScenna, 1985, 1986; Moscovitch,

1992; Teyler and Rudy, 2007). In essence, ‘‘indexing the-

ory proposes that the content of our experiences is stored

in the multiple neocortical loci activated by experience

and the hippocampus stores an index of those neocortical

loci” (Teyler and Rudy, 2007; p. 1160). Indexing theory is

primarily concerned with accounting for the reactivation of

memories; our view expands on this to account also for

novel patterns of thought that draw on mnemic material

but recombine it into new thoughts and simulations of

experience. If a specific pattern of medial temporal lobe

activity and connectivity to neocortex indeed gives rise

to memory recall, it follows that slightly altered or novel

patterns of hippocampal activity will ‘index’ novel patterns

of distributed neocortical activity never before experi-

enced – that is, novel thoughts and simulated experi-

ences. Although this account is speculative, it is

consistent with lesion evidence (discussed above) indicat-

ing that medial temporal lobe is crucial for the detailed

imagination of novel or fictitious scenarios (Klein et al.,

2002; Hassabis et al., 2007; Rosenbaum et al., 2009;

Andelman et al., 2010; Kwan et al., 2010; Race et al.,

2011, 2013). Because dreams almost never replay actual

episodic memories (Fosse et al., 2003), but rather recom-

bine mnemonic elements into novel scenes and experi-

ences (Nielsen and Stenstrom, 2005), the lesion

evidence that medial temporal lobe is crucial to dream

generation (Greenberg et al., 1968; Torda, 1969) also

supports its putative role in generating novel mental con-

tent. Moreover, it has been suggested that the patterns of

synaptic connectivity within the hippocampus in particular

lend themselves well to novel connections. In contrast to

the connectivity of most other cortical areas, where short-

distance synapses to nearby cells predominate and

longer-distance connections are rare (Thomson and

Bannister, 2003; Douglas and Martin, 2004; Markram

et al., 2004), hippocampal neurons are almost equally

likely to contact nearby and distant neighbors (Li et al.,

1992, 1994; Buzsaki, 2006). This widely divergent

microcircuitry means that any neuron can contact any

other with a minimal number of synapses (usually no

more than 2–3) – an appealing neural substrate for

arbitrary, unlikely, or novel connections between neurons
which otherwise encode highly distinctive perceptual or

mnemic qualities (Buzsaki, 2006). We suggest that spon-

taneous activity in medial temporal lobe regions can

therefore potentially activate novel neuronal networks

within the medial temporal lobe, which can in turn ‘index’

and recruit novel patterns of activity throughout the brain

through the medial temporal lobe’s dense interconnec-

tions with other areas.

The central problem is to understand ‘‘the manner in

which electrical stimulation of a particular location [or

spontaneous, self-generated activity at a given location]

leads to activation of [a] very widespread but, at the

same time, very particular network” (Bancaud et al.,

1994; p. 87). We do not predict a single, universal pattern

of spreading activity. The pattern of subsequent recruit-

ment should instead be related to the experiential quali-

ties of the accompanying thoughts, including the

sensory modalities instantiated (visual, auditory,

somatosensory, etc.); affective tone (positive, negative,

or neutral); and other qualities such as temporal orienta-

tion (past, present, future) and goal-relatedness. For

instance, thoughts that are visual in nature may involve

spreading activity (at the neuronal level) and subse-

quently observable recruitment (e.g., with functional neu-

roimaging) of areas such as the lingual gyrus (cf. Fig. 1).

Similarly, we would predict that more goal-related

thoughts involving planning for the future, or thoughts that

are otherwise guided in an intentional and voluntary fash-

ion, should tend to recruit prefrontal executive areas such

as dorsal anterior cingulate cortex and rostrolateral pre-

frontal cortex (Seli et al., 2016). Some preliminary evi-

dence for the neural dissociability of different thought

types has been provided by fMRI investigations: for

instance, using multivariate pattern analyses (MVPA),

one group was able to predict the emotional valence (pos-

itive vs. negative) of thoughts at above chance levels

based on activation in the medial prefrontal cortex

(Tusche et al., 2014); another study found varying pat-

terns of intrinsic brain activity associated with a variety

of thought tendencies, such as the frequency of visual

or future-oriented thoughts (Gorgolewski et al., 2014).

For more on this issue, see the Discussion section in

Fox et al. (2015).

A further consideration is that new thoughts and

imagined mental content may not be determined merely

by patterns of synaptic connections alone – these

anatomical connections could also interact with a host of

other factors that all participate in the sculpting of

spontaneous and ‘noisy’ brain activity into an overall

pattern of activity ultimately corresponding to

subjectively experienced mental content of one form or

another. Aside from the basic neurochemical state of

the brain at a given time (see next section), ‘‘current

sensory input, cognitive context and/or psychosocial

concerns could sometimes be major influences in

defining the final pattern to emerge from the sculpting”

(Bancaud et al., 1994; p. 87).

Evidence bearing on this question is unfortunately

much more sparse – commensurate with the increased

difficulty of the problem. A comprehensive

understanding of the spread of spontaneous activations
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would require widespread electrode placement

throughout the brain – a situation uncommon in human

electrophysiology studies, where electrode placement is

determined strictly by clinical criteria and rarely requires

simultaneous recording from many widely dispersed sites.

To truly explore the hypothesized model of self-

generated thought ontogeny requires recording from

relevant cortical areas and the medial temporal lobe,

simultaneously. The study that probably best

approximates this ideal methodology investigated

episodic memory retrieval while recording simultaneously

from medial temporal lobe and the retrosplenial cortex in

the posteromedial area (Foster et al., 2013). The authors

reported that episodic memory retrieval involved phase

locking in the theta band (3–4 Hz) between these two

regions, and that this concerted activity was unique to this

frequency band as well as to these two regions. Most

intriguing is that the coupling was strongest prior to actual

peak high-frequency activity in the retrosplenial cortex,

potentially suggesting a primary role for the medial tempo-

ral lobe. Another study investigating spontaneous memory

recall with human intracranial electrophysiology found that

medial temporal lobe structures demonstrated some of the

strongest increases in high-frequency (i.e., high c-band)
activity just prior to conscious recall and reporting of the

memory (Burke et al., 2014), whereas high-frequency

activity peaked later in several parietal, temporal, and fron-

tal regions (see their Fig. 4). Importantly, although the

medial temporal lobe was not the only region in which

high-frequency activity peaked prior to recall, it was the

only one in which this activity significantly predicted subse-

quent memory recall, suggesting a cardinal role in memory

recollection (Burke et al., 2014).

A limitation of these studies (for our purposes) is that

they involve memory retrieval in one form or another;

therefore they do not speak to the possibility of truly

novel patterns of activity – a precondition for any

neuron-level model of self-generated thought. Some

preliminary evidence for this possibility, however, comes

from animal models. Several well-known animal studies

have demonstrated that patterns of medial temporal

lobe activity reflecting recent spatiotemporal

experiences and memories are spontaneously replayed

during periods of resting wakefulness (Foster and

Wilson, 2006; Diba and Buzsáki, 2007) or subsequent

sleep (Wilson and McNaughton, 1994). Coordinated

replay across medial temporal lobe and various neocorti-

cal areas, including visual regions (Ji and Wilson, 2007)

and posterior parietal cortex (Qin et al., 1997), has also

been reported – although a causal role for the medial tem-

poral lobe in initiating this activity has not been shown.

Interestingly, recent studies have shown that ‘replay’ need

not be a mere recapitulation of previous firing patterns,

but often contains novel firing sequences that do not cor-

respond to any actual spatiotemporal sequence of experi-

ence (Davidson et al., 2009; Gupta et al., 2010). These

novel firing sequences have been interpreted as evidence

for planning and imagining of alternative behaviors

(Knierim, 2009; Gupta et al., 2010) – i.e., the generation

of novel thoughts, plans, and imagined scenarios, akin

to self-generated thought content in humans.
In summary, although the network-level ontogeny of

thoughts putatively generated in the medial temporal

lobe remains largely obscure, many important

prerequisites for an ‘indexing’ scenario have already

been demonstrated. The medial temporal lobe is known

to spontaneously reactivate patterns of activity first

instantiated during novel experience and learning, and

this reactivation takes place not only during sleep but

also waking behavior and restful states. This patterned

replay can be temporally synchronized with various

neocortical brain areas (Qin et al., 1997; Ji and Wilson,

2007), and, critically, ‘replay’ can in fact involve novel pat-

terns of activity that do not correspond to any specific

experience (Davidson et al., 2009; Knierim, 2009; Gupta

et al., 2010). Although still far from definitive, all of these

findings are consistent with an ‘indexing’ theory of self-

generated thought origin and ontogeny, whereby sponta-

neous medial temporal lobe activity activates neuronal

networks dispersed throughout the brain, instantiating

either recall of memories or the experience of novel

thoughts and imaginings. Perhaps most important, elec-

trode montages that include both medial temporal lobe

and other regions clearly important to self-generated

thought (Fig. 1) are occasionally employed in clinical set-

tings with human participants (Ekstrom et al., 2003;

Gelbard-Sagiv et al., 2008; Foster et al., 2013; Burke

et al., 2014); the stage is therefore set for further explo-

ration of the temporal and spatial dynamics that charac-

terize the ontogeny of thoughts in the human brain. The

most fruitful approach might be to combine intracranial

electrophysiology (which has unparalleled temporal reso-

lution, but cannot be expected to cover a large number of

brain regions in human studies) with functional MRI (with

poor temporal resolution, but the ability to sample from all

brain regions simultaneously). The safe and optimal com-

bination of these methods is an area of active research

and has already been demonstrated in feasibility studies

(Carmichael et al., 2007, 2010).
Limitations of intracranial EEG investigations in
humans

Some important limitations of the aforementioned

research, and hence the conclusions drawn from it,

should be kept in mind. First, all such recordings and

stimulations have, by necessity, been conducted in

patients with severe neurological conditions. Although in

some cases these conditions might not be expected to

appreciably alter neuroelectric activity in and of itself,

because results cannot be compared with healthy

controls, the possibility remains of unknown and

unforeseen differences that limit the generalizability of

any findings to healthy humans. Second, the number

and placement of electrodes are determined strictly by

considerations of clinical necessity in any given patient.

While this practice is of course indisputably the right

course of action, for purposes of research on cognition

it can often mean that electrodes are too few, or not

optimally placed, to answer research questions. This

leads to a third complication, namely drawing

conclusions based on concatenation of data from large
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numbers of patients with disparate neurological

conditions and highly variable electrode placement.

Although of course this can be a powerful approach

yielding novel insights (such as those we have

proffered, above, on neural origins and ontogeny of self-

generated thought), nonetheless it should be kept in

mind that synthesis of data on this scale introduces

large but not-fully-understood sources of variability that

might limit or distort any putative findings.

THE MODULATION OF SELF-GENERATED
THOUGHT: INDICATIONS FROM THE

NEUROCHEMISTRY OF REM SLEEP AND
CREATIVE THINKING

All brain activity, from single-neuron spike trains to large-

scale network interactions, takes place within the context

of a neurochemical milieu (Brady et al., 2005). Even rela-

tively small differences in levels of key neurotransmitters

and neuromodulators can have profound effects on cogni-

tion, affect, and even consciousness itself (Perry et al.,

2002). Everyday externally-oriented waking cognition is

intimately dependent on a particular neurochemical profile

– and alterations in absolute and relative neurotransmitter

levels rapidly leads to strikingly different mental states,

such as deep sleep, dreaming, anesthesia, and so on

(Jones, 1991, 2005; Perry et al., 2002). Waking self-

generated thought typically involves a decoupling from

the external perceptual environment (Smallwood et al.,

2008; Kam et al., 2011, 2013; Kam and Handy, 2013),

suggesting deviations from the ‘standard’ neurochemistry

that supports vigilant monitoring of, and engagement with,

the outside world (Smallwood et al., 2012). Sleep and

dreaming represent the limit cases of this kind of percep-

tual disengagement, and are driven by a neurochemical

profile that differs drastically from waking (Jones, 1991,

2005). Dreaming is a particularly intriguing parallel

because, like waking self-generated thought, it involves

a simultaneous decoupling from external inputs alongside

self-generated simulations, perceptions, and affect. Wak-

ing self-generated thought therefore represents an intrigu-

ing in-between state involving partial disengagement from

external inputs alongside heightened attention to inner

channels of information (Dixon et al., 2014). Together with

our functional neuroimaging findings (reviewed above;

Fig. 2) that waking self-generated thought shows patterns

of brain activation intermediate between externally-

oriented thinking and fully decoupled, internally-

generated dream mentation (Fox et al., 2013, 2015;

Domhoff and Fox, 2015), these results hint at the possibil-

ity that waking self-generated thought is characterized,

and perhaps influenced to a large degree, by a unique

neurochemical profile (Hu et al., 2013; Mittner et al.,

2014). Findings of alterations in self-generated thought

following ingestion of substances support this notion: for

instance, consuming moderate levels of alcohol increases

rates of probe-caught mind-wandering while simultane-

ously reducing meta-awareness of mind-wandering as

indexed by self-reported zoning out (Sayette et al.,

2009). Although the exact neurochemical mechanisms

of action of alcohol in the brain remain poorly understood,
there is no doubt that it has significant effects on multiple

neurotransmitter systems, including GABA receptor ago-

nism and NMDA receptor antagonism (Krystal and

Tabakoff, 2002). Intriguingly, the dissociative anesthetic

ketamine also appears to act primarily via antagonism of

NMDA receptors (Salt et al., 1988; Jansen and Sferios,

2001) and can likewise lead to increased attention to

self-generated channels of information (Fox et al., in

press).

Beyond these suggestive findings, however, little

research has directly considered the neurochemistry of

self-generated thought. Although investigation of the

neurochemical determinants and correlates of self-

generated thought therefore remains a largely

unexplored field of research, promising avenues of

research are suggested by investigations of the

neurochemistry of several related cognitive processes

(Christoff et al., 2011). The first is dreaming, which (as

explained above) we view as self-generated thought par
excellence (Fox et al., 2013; Domhoff and Fox, 2015;

Christoff et al., in press). Although dreaming is in principle

doubly dissociable from REM sleep (Solms, 2000), in

practice dreaming almost always accompanies REM

(r= .8), and occurs far more frequently during this sleep

stage than any other (Hobson et al., 2000; Fox et al.,

2013). Further, although prefrontal executive areas are

deactivated during REM sleep (whereas some activation

of executive areas is retained in waking self-generated

thought), many of the areas active during self-generated

thought are even more active in REM, consonant with

the more immersive and hyper-associative experiences

of dreaming (as compared to waking thought and fan-

tasy). In practice, then, the neurochemistry of REM sleep

is potentially informative for future investigations of the

neurochemistry of waking self-generated thought, in that

it may shed light on the brain states and neurotransmitter

ratios that facilitate highly associative and novel patterns

of thought, and increased attention to internal channels

of information. Although the neurochemistry of sleep is

extremely complex, and moreover much of the data is

drawn from animal research due to the difficulty of study-

ing neurotransmitter levels in humans, nonetheless some

general conclusions have been proposed. The general

trend in REM sleep appears to be a decrease in levels

of most major neurotransmitters and neuromodulators

(e.g., GABA, histamine, glutamate, serotonin, etc.) – with

the marked exception of acetylcholine and dopamine,

which instead appear to be elevated beyond, or at least

on par with, normal waking levels (Gottesmann, 1999;

Pace-Schott and Hobson, 2002; Solms, 2002; Jones,

2005; Lena et al., 2005; Hobson, 2009). Behavioral evi-

dence from humans provides some corroboration of these

largely animal-derived values: for instance, increased

vividness and emotionality of dreams has been reported

in patients with Alzheimer’s disease or dementia being

treated with the acetylcholinesterase inhibitor galan-

tamine (Corbo et al., 2013), and recreational users of

galantamine have provided similar, if anecdotal, reports

(Laberge, 2004; Yuschak, 2006). There have also been

reports of increased vividness, duration, and emotionality

of dreaming in Parkinson’s disease patients being treated
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with L-dopa, a precursor molecule of dopamine (as well as

other neurotransmitters) (Moskovitz et al., 1978; Sharf

et al., 1978; Solms, 2002). Given the many similarities

between dreaming and waking self-generated thought,

these neurochemical findings, although tentative, suggest

hypotheses about the neurochemistry of self-generated

thought that would be relatively straightforward to test.

For instance, experimental administration of safe, reason-

able doses of dopamine precursors, or acetyl-

cholinesterase inhibitors, could be compared with

placebo in terms of effect on the frequency, affective tone,

or vividness of self-generated thought.

Complementary hypotheses can be derived from

studies of the neurochemistry of creative thought. The

similarities in terms of content, cognitive process, and

neurophysiological recruitment between self-generated

thought and creativity are discussed in detail elsewhere

(Christoff et al., 2011, Ellamil et al., 2012; Fox and

Christoff, 2014; Beaty et al., 2015); the salient point for

us here is that these several similarities make the neuro-

chemistry of creative thought potentially informative.

Probably the most reliable finding from such research is

that decreasing levels of arousal-heightening neurotrans-

mitters, such as norepinephrine, appears to be beneficial

for creative thinking (Beversdorf et al., 1999; Heilman

et al., 2003; Silver et al., 2004, Christoff et al., 2011).

The proposed rationale for these findings is that

decreased arousal and cognitive control facilitates the

associative, novel forms of thought necessary to the gen-

eration of creative ideas (Christoff et al., 2011). Given that

self-generated thought commonly involves a similar cre-

ative recombination of past ideas and memories into

novel simulations and imagination, a straightforward

hypothesis would be that norepinephrine antagonists

could, similarly, lead to increased frequency or novelty

of self-generated thought.

Related to this discussion, a specific proposal has

recently been put forward that self-generated thought

may be facilitated by high tonic norepinephrine activity

(Smallwood et al., 2012). The key distinction here is

between vigorous phasic norepinephrine activity, which

appears to facilitate attention to changing goals in the

external world, and high tonic levels, which might reduce

the signal-to-noise ratio of external stimuli and allow for

greater attention to internal channels of information, such

as self-generated thought (Smallwood et al., 2012).

Although this hypothesis may not necessarily align per-

fectly with predictions based on creativity research, both

lines of thinking agree on the importance of further inves-

tigations of the role played by norepinephrine.

To summarize, the unique constellation of brain

networks activated by self-generated thought, together

with its singular phenomenological properties midway

between the external and internal worlds, suggests an

uncommon neurochemical profile – but one that may

have parallels in other cognitive states. Evidence from

cognitive processes that exhibit patterns of brain

recruitment similar to self-generated thought, including

REM sleep and dreaming (Fox et al., 2013) and creative

thinking (Ellamil et al., 2012; Beaty et al., 2015),

suggest that investigation of acetylcholine, dopamine,
and norepinephrine in particular could prove fruitful.

Hypotheses about the enabling or inhibitory role of these

neurotransmitters in self-generated thought could be

tested relatively easily using simple thought sampling

paradigms (Christoff et al., 2009) combined with the

administration of safe, widely-available, and affordable

neurochemical agents and precursors (cf. (Chamberlain

et al., 2006).

SYSTEMS BIOLOGY OF SELF-GENERATED
THOUGHT: RELATIONSHIP TO

NEUROENDOCRINOLOGY AND OTHER
BIOMOLECULES THROUGHOUT THE BODY

Although this review has focused mostly on neurobiology,

clearly the brain is embedded in, and interacts intimately

with, the rest of the body: what the brain does and

thinks about affects, and is affected by, the broader

biological state of the organism and levels of countless

hormones and other biomolecules. This systems biology

perspective understands the entire body, including the

nervous system, as a deeply intertwined and mutually

interdependent set of subsystems with complex,

nonlinear, and difficult-to-predict effects on one another

(Kitano, 2001; Capra and Luisi, 2014). Such a perspective

can begin to shed light on mostly unexplored relationships

between mental content, brain activation, and organism-

wide biochemistry. Here we discuss some examples of

seminal work in this domain examining neuroendocrinol-

ogy and other biomolecules at the sub-cellular level.

Neuroendocrinology of self-generated thought

The neuroendocrinology of self-generated thought

explores how various hormones may affect, or be

affected by, the content and general pattern of one’s

thought. A straightforward prediction would be that

negatively-toned self-generated thought might result in

(or from) elevated levels of stress-related hormones,

such as cortisol (Chrousos, 2009). One recent study

explored the affective valence of self-generated thought

and its relationship to cortisol and a-amylase, two biomo-

lecules implicated in the body’s basic stress response

mediated by the hypothalamic–pituitary-adrenal (HPA)

axis (Engert et al., 2014). The authors found that the fre-

quency of negatively-valenced as well as past-oriented

thoughts was associated with elevated levels of both

biomarkers. These findings parallel earlier research that

also found relationships between elevated cortisol and

higher levels of rumination, a hallmark of depressive

thinking (Zoccola et al., 2008; Rydstedt et al., 2009).

Clearly much remains to be done toward understanding

the neuroendocrinology of self-generated thought, but

these pioneering studies demonstrate that such investiga-

tions are both feasible and potentially informative.

Other biomolecules and self-generated thought

Another relatively unexplored area of research extends

beyond hormones to an endless array of additional

biomolecules that might be related to the content and

overall patterns of self-generated thought. One
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pioneering study has examined the relationship between

frequency of self-generated thought and the length of

telomeres, the repetitive nucleotide sequences that

protect chromosome termini (Epel et al., 2012). Telomere

length decreases with natural aging, but also in associa-

tion with psychological and physiological stress, with

telomere shortness predicting early disease onset and

mortality (Lin et al., 2012). The authors found that higher

frequency of self-reported mind-wandering was associ-

ated with significantly shorter immune cell telomere

length, and this relationship persisted even after control-

ling for other sources of stress (Epel et al., 2012). These

intriguing results only hint at the vast number of meaning-

ful interrelationships that might exist between patterns of

thought content and brain activation on the one hand,

and biomarkers of health, stress, and aging on the other.

CONCLUSION

The discovery of the DMN has been extremely influential

in drawing attention to intrinsic brain activity and the self-

generated mental experience that often accompanies it

(Raichle, 2010). Functional neuroimaging has provided

sufficient empirical evidence to give a general, if prelimi-

nary, notion of the neural basis of self-generated thought,

which includes but also extends beyond the DMN (Fig. 1).

A wide array of neuroscience methods is now needed to

more fully understand the many brain regions and multiple

networks implicated in self-generated forms of cognition,

as well as the relationship of self-generated thought to

the rest of the body. As the nascent cognitive neuro-

science of self-generated thought develops, research

needs to move beyond DMN-based models to begin

investigating its many other neurobiological characteris-

tics with methods such as lesion studies (Fig. 2), intracra-

nial electrophysiology (Fig. 3), and experimental

manipulation and measurement of neurotransmitters

and relevant hormones.

The spectacular success of the DMN has served as a

ladder of sorts by which cognitive neuroscience has

reached a much wider acceptance of the value of

studying spontaneous brain activity and its relationship to

self-generated thinking. From this higher vantage point,

the DMN can now be seen as a critical, but only partial,

component of the neurobiology of self-generated thought.

A DMN-centric view has helped us climb to this broader

perspective, but may be in danger of becoming an

obstacle to further progress. To paraphrase Wittgenstein:

To climb beyond we must, so to speak, throw away the

ladder after we have climbed up it (Wittgenstein, 1994).
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