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A B S T R A C T

Anticorrelation between the default network (DN) and dorsal attention network (DAN) is thought to be an
intrinsic aspect of functional brain organization reflecting competing functions. However, the effect size of
functional connectivity (FC) between the DN and DAN has yet to be established. Furthermore, the stability of
anticorrelations across distinct DN subsystems, different contexts, and time, remains unexplored. In study 1 we
summarize effect sizes of DN-DAN FC from 20 studies, and in study 2 we probe the variability of DN-DAN
interactions across six different cognitive states in a new data set. We show that: (i) the DN and DAN have an
independent rather than anticorrelated relationship when global signal regression is not used (median effect
size across studies: r=−.06; 95% CI: −.15 to .08); (ii) the DAN exhibits weak negative FC with the DN Core
subsystem but is uncorrelated with the dorsomedial prefrontal and medial temporal lobe subsystems; (iii) DN-
DAN interactions vary significantly across different cognitive states; (iv) DN-DAN FC fluctuates across time
between periods of anticorrelation and periods of positive correlation; and (v) changes across time in the
strength of DN-DAN coupling are coordinated with interactions involving the frontoparietal control network
(FPCN). Overall, the observed weak effect sizes related to DN-DAN anticorrelation suggest the need to re-
conceptualize the nature of interactions between these networks. Furthermore, our findings demonstrate that
DN-DAN interactions are not stable, but rather, exhibit substantial variability across time and context, and are
coordinated with broader network dynamics involving the FPCN.

1. Introduction

The last decade has witnessed extraordinary interest and progress
in network neuroscience―the understanding of how interconnected
brain regions operate in concert as large-scale networks, and how these
networks relate to healthy and pathological cognitive functioning
(Buckner et al., 2013; Bullmore and Sporns, 2009; Fox and Raichle,
2007; Medaglia et al., 2015; Petersen and Sporns, 2015). Resting state
functional connectivity has emerged as a powerful, non-invasive tool
for delineating the functional network architecture of the human brain.
Correlated fluctuations in BOLD signal measured during “rest” are
thought to reveal intrinsic networks that persist across time
(Damoiseaux et al., 2006) and context (Cole et al., 2014; Smith et al.,
2009) due to their presumed source in stimulus-independent brain

activity reflecting the underlying polysynaptic structural neuroanatomy
(Fox and Raichle, 2007; Van Dijk et al., 2010).

One of the most influential findings to emerge from network
neuroscience is the demonstration of anticorrelated networks, osten-
sibly reflecting competing functions (Fox et al., 2005; see also
Fransson, 2005; Golland et al., 2008). The default network (DN) is
involved in a variety of internally-directed processes, including self-
reflection, autobiographical memory, future event simulation, concep-
tual processing, and spontaneous cognition (Andrews-Hanna et al.,
2014; Buckner et al., 2008; Christoff et al., 2016; Ellamil et al., 2016;
Fox et al., 2015, 2016; Raichle, 2015; Raichle et al., 2001) and exhibits
decreased activation during many cognitive tasks that demand external
perceptual attention (Greicius, Krasnow, Reiss, and Menon, 2003;
Gusnard and Raichle, 2001; Shulman et al., 1997). In contrast a
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collection of regions, known initially as the “task-positive” network,
demonstrate activity increases during cognitive tasks that require
externally focused visuospatial attention (Cole and Schneider, 2007;
Corbetta and Shulman, 2002; Dosenbach et al., 2006; Duncan, 2010;
Fox et al., 2005; Golland et al., 2007; Miller and Buschman, 2013;
Vincent et al., 2008). The idea of competitive large-scale network
interactions emerged when Fox et al. (2005) reported that the DN and
“task positive” network were anticorrelated during the resting state,
potentially reflecting a toggling between internally-oriented and ex-
ternally-oriented cognitive processing (see also Fransson (2005)).
However, subsequent studies led to a refinement of this idea, demon-
strating co-activation and positive functional connectivity between the
DN and the frontoparietal control network (FPCN)―a component of
the “task positive” network―during some task conditions, including
mind wandering (Christoff, 2012; Christoff et al., 2009; Fox et al.,
2015), spontaneous thought (Ellamil et al., 2016), autobiographical
future planning (Gerlach et al., 2014; Spreng et al., 2010), creativity
(Ellamil et al., 2012), memory recall (Fornito et al., 2012), working
memory guided by information unrelated to current perceptual input
(Konishi et al., 2015), social working memory (Meyer et al., 2012), and
semantic decision making (Krieger-Redwood et al., 2016). Moreover,
cooperative dynamics between the FPCN and DN correlate with better
task performance in some cases (e.g., Fornito et al., 2012). Cooperative
dynamics between these networks may occur when meta-cognitive
awareness and/or deliberate control is brought to bear on internally-
oriented processing (Andrews-Hanna et al., 2014; Christoff et al., 2016;
Dixon et al., 2014b; Fox and Christoff, 2014; Smallwood et al., 2012).
On the other hand, studies have generally found anticorrelation
between the DN and other components of the “task positive” network,
particularly the dorsal attention network (DAN) (Chai et al., 2012,
2009; De Havas et al. 2012; Fornito et al., 2012; Gao and Lin, 2012;
Holmes et al., 2015; Josipovic et al., 2012; Kelly et al., 2008; Lee et al.,
2012; Spreng et al., 2016; Van Dijk et al., 2010; Yeo et al., 2015).

The idea of competitive anticorrelated networks has been influential
and used to explain the origin of attentional lapses and behavioral
variability in healthy adults (Keller et al., 2015; Kelly et al., 2008;
Weissman et al., 2006), cognitive immaturity in children (Chai et al.,
2014), and abnormal functioning in conditions such as ADHD
(Sonuga-Barke and Castellanos, 2007). Although global signal regres-
sion can induce spurious anticorrelations when included as part of data
preprocessing (Murphy et al., 2009; Saad et al., 2012), negative FC
between the DN and “task-positive” regions has been observed even
without this step, suggesting that it is a true biological phenomenon
(Chai et al., 2012; Chang and Glover, 2009; Fox et al., 2009). However,
there are a number of important questions that have not been
addressed. We still lack a clear understanding of the strength of
negative FC between the DN and DAN; the extent to which the
relationship between these networks varies across DN subsystems,
different cognitive states, and time; and how DN-DAN interactions
relate to broader network dynamics involving the FPCN. Here, we
provide a systematic investigation of DN-DAN interactions to address
these questions.

In study 1, we sought to determine the effect size of negative FC
between the DN and DAN. While the notion of anticorrelation is often
highlighted in papers that examine DN-DAN interactions, rarely is
there discussion of the actual effect size. It is quite possible that
negative FC between the DN and DAN is a statistically reliable but weak
effect, rather than a true anticorrelation. This is a critical question
given that initial studies of anticorrelation used global signal regression
(GSR) which is known to alter the distribution of correlation coeffi-
cients, and may not provide an accurate assessment of the true effect
size of negative FC between the DN and DAN (Murphy et al., 2009). By
removing the global signal as part of preprocessing, this mathemati-
cally ensures that there are a roughly equal number of positive and
negative correlations that are distributed around 0, which can intro-
duce artifactual negative correlations, or inflate the strength of true

negative correlations (Murphy et al., 2009). We therefore conducted a
meta-analysis of 20 studies reporting anticorrelation to examine
empirical effect sizes, and the potential impact of including GSR as
part of preprocessing.

In study 2, we examined the variability of DN-DAN interactions in a
new data set using several different approaches. Since the discovery of
DN-DAN anticorrelation, developments in understanding the DN have
now revealed that it is not a unitary entity, but rather, composed of
three distinct subsystems (for a review see Andrews-Hanna et al.
(2014)). Our first goal was to examine whether the DAN exhibits
similar or distinct functional interactions with these subsystems.
Although it is too early to definitively characterize the function of each
subsystem, preliminary evidence suggests: (1) a Core subsystem
involved in self-referential processing, including the construction of a
temporally-extended self with attributes, preferences, and autobiogra-
phical details; (2) a dorsomedial prefrontal subsystem involved in
semantic processing and mentalizing (i.e., generating inferences about
mental states including beliefs and desires); and (3) a medial temporal
lobe subsystem involved in retrieving and binding together contextual
details during the recollection of episodic memories and simulation of
future events. Interestingly, studies have found coactivation of the DAN
and dorsomedial prefrontal subsystem during a social working memory
task (Meyer et al., 2012), and coactivation of the DAN and medial
temporal lobe subsystem during a memory-guided attention task
(Summerfield et al., 2006), raising the possibility that these subsystems
may not be antagonistic with the DAN. Indeed, learning often requires
a synergy between perceptual and memory processes (Chun and Turk-
Browne, 2007; Hasselmo and McGaughy, 2004), and mental state
inferences often draw upon perceptual input (e.g., facial expressions)
(Baron-Cohen et al., 2001). Discerning the nature of functional
interactions between the DAN and the distinct DN subsystems may
provide critical information about the cognitive processes that may or
may not be inherently competitive.

A second goal of study 2 was to examine the stability of antic-
orrelations across time and across different cognitive states. Mounting
evidence suggests that the strength and topography of functional
connectivity patterns reconfigure across time and different tasks
(Allen et al., 2014; Braun et al., 2015; Cole et al., 2013; Davison
et al., 2015; Geerligs et al., 2015; Gonzalez-Castillo et al., 2015;
Hermundstad et al., 2014; Hutchison et al., 2013; Krienen et al.,
2014; Kucyi et al., 2016; Mennes et al., 2013; Shine et al., 2016;
Shine et al., 2016; Shirer et al., 2012; Simony et al., 2016; Zabelina and
Andrews-Hanna, 2016; Zalesky et al., 2014). It is possible that antic-
orrelations are related to the cognitive state elicited by rest, that is,
spontaneous thoughts of current concerns, past events, and future
plans (Andrews-Hanna, 2012; Delamillieure et al., 2010). DN-DAN
interactions may depart from anticorrelation under some cognitive
states, for example, those that require a mixture of perceptual proces-
sing and internal conceptual thoughts (Dixon et al., 2014b). A recent
study observed DN engagement during an externally-directed working
memory task when participants leveraged prior knowledge of the
stimuli to complete the task (Spreng et al., 2014), suggesting that
there may be task conditions affording greater cooperation between the
DN and DAN. Finally, there is some evidence that negative FC
involving the DN may vary across time even during rest (Allen et al.,
2014; Chang and Glover, 2010). Here, we investigated possible
contextual and temporal variability of DN-DAN interactions by exam-
ining their relationship across time and different cognitive states within
the same participants.

The third goal of study 2 was to examine the possibility that
changes across time in DN-DAN FC strength are related to broader
temporal dynamics involving the coordination of multiple large-scale
networks. Recent work has demonstrated that the strength of FC
between a pair of nodes (regions) can increase or decrease across time,
and this tends to occur in a coordinated manner, with sets of
connections evolving in concert (Bassett et al., 2014; Davison et al.,

M.L. Dixon et al. NeuroImage 147 (2017) 632–649

633



2015; Zalesky et al., 2014). Here, we sought to extend this idea by
examining the temporal co-evolution of interactions at the level of
large-scale networks rather than individual regions. Based on evidence
that the FPCN has extensive functional interconnections with the DN
and DAN (Spreng et al., 2013) and plays a role in regulating internal
and external attention (Dixon et al., 2014b; Dixon et al., in press; Gao
and Lin, 2012; Smallwood et al., 2012; Spreng et al., 2010; Vincent
et al., 2008), we hypothesized that there would be dynamic interactions
coordinated across the FPCN, DN, and DAN. For example, we
hypothesized that changes across time in the strength of DN-DAN
coupling would be tightly coordinated with changes across time in the
strength of FPCN-DAN coupling.

To examine these questions, we used fMRI in conjunction with
functional connectivity (FC) and machine learning classification ana-
lyses. We monitored brain activation dynamics during six conditions:
(i) rest; (ii) movie viewing; (iii) analysis of artwork; (iv) social
preference shopping task; (v) evaluation-based introspection; and (vi)
acceptance-based introspection. Because these conditions differ from
traditional cognitive tasks, we refer to them as cognitive states or
contexts, rather than tasks. These conditions were designed to elicit
mental states that resemble those frequently experienced in everyday
life, and were predicted on theoretical grounds to result in variable DN-
DAN interactions (Dixon et al., 2014b). That is, we designed conditions
that we believed were most likely to show a change in FC away from a
negative correlation between the DN and DAN to provide a general test
of whether DN-DAN interactions remain stable across different con-
texts. These conditions involved a combination of internal and external
processing requirements, or deliberate control over internal proces-
sing. Each condition elicited a continuous mental state and did not
require any responses. All data underwent the same preprocessing
procedure typically used with resting state fMRI that does not rely
upon global signal regression (Whitfield-Gabrieli and Nieto-Castanon,
2012).

2. Materials and methods

2.1. Study 1 Effect size meta-analysis

In study 1, we examined the effect size of DN-DAN FC in 20 studies.
Using Google Scholar and PubMed, we performed searches containing
the words: “default network”, “anticorrelation”, “functional connectiv-
ity”, and “fMRI”. We found additional studies through the reference
lists of these papers. Studies were included in the analysis if they met
the following criteria: (i) used fMRI; (ii) acquired data from healthy
young adults; (iii) examined DN-DAN FC; and (iv) reported a relevant
effect size―an r or z(r) value, or provided figures with legends that
allowed for an approximation of the effect size. Because some studies
did not report an effect size, our meta-analysis is not exhaustive. Where
studies reported results with and without GSR, we included both
results for comparison. We report 95% confidence intervals for the
median effect size, generated based on bootstrapping with 1000
samples. In most cases studies provided data for a resting state
condition, however, there were a few exceptions: Golland et al.
(2007) reported data from a movie viewing condition; Fornito et al.
(2012) reported “spontaneous” fluctuations reflecting data from a
recollection task, after task-related signals had been regressed out;
and Amer et al. (2016) reported data from a 1-back task. All studies
acquired data from healthy adults. However, two studies had unique
samples that are worth commenting on. Anderson et al. (2011) used a
large sample with ages ranging from 7–35 years (mean=18.8, SD=6.1).
Although DN-DAN interactions change across development, it is
currently unknown when they reach adult-like patterns (Chai et al.,
2014; Gao et al., 2013). Thus, it should be kept in mind that the effect
size from this study (reflecting data from all participants) may
potentially underestimate DN-DAN negative FC. Josipovic et al.
(2012) examined DN-DAN FC in a sample of experienced meditators.

It is currently unknown whether meditation training leads to enduring
changes in resting state network organization, so the finding from this
study should be viewed with caution. Additionally, it should be noted
that Chang and Glover (2009) only reported data for three participants,
and therefore, the values we report from this study likely over-estimate
the strength of negative FC. Additional details for each study are
presented in Supplementary Table 1.

2.2. Study 2 Participants

Participants in study 2 were 24 healthy adults (Mean age=30.33,
SD=4.80; 10 female; 22 right handed), with no history of head trauma
or psychological conditions. This study was approved by the UBC
clinical research ethics board, and all participants provided written
informed consent, and received payment ($20/hour) for their partici-
pation. Due to a technical error, data for the movie and acceptance-
based introspection conditions were not collected for one participant.
At the end of scanning, another participant reported experiencing
physical discomfort throughout the scan. Similar results were obtained
with or without inclusion of this participant's data, so they were
included in the final analysis.

2.3. Experimental conditions

Each participant performed six conditions in separate six-minute
fMRI runs (see Supplementary methods for additional details): (1)
Rest. Participants lay in the scanner with their eyes closed and were
instructed to relax and stay awake, and to allow their thoughts to flow
naturally. (2) Movie watching. Participants watched a clip from the
movie “Star Wars: Return of the Jedi”, during which Luke Skywalker
engages in a light-saber duel with Darth Vader. (3) Artwork analysis.
Participants viewed four pieces of pre-selected artwork, each for 90 s,
and were instructed to attend to the perceptual details and the personal
meaning of the art. (4) Shopping task. Participants viewed a pre-
recorded video shot from a first-person perspective of items within
several stores in a shopping mall, and were instructed to imagine that
they were shopping for a birthday gift for a friend, and to think about
whether each item would be a suitable gift based on their friend's
preferences. (5) Evaluation-based introspection. Participants reflected
on a mildly upsetting issue involving a specific person in their life and
were asked to analyze why the situation is upsetting, who caused it,
what might happen in the future, and to become fully caught up in their
thoughts and emotions. (6) Acceptance-based introspection.
Participants reflected on a mildly upsetting issue involving a specific
person in their life and were asked to cultivate a present-centered
awareness, grounded in the acceptance of moment-to-moment viscero-
somatic sensations (i.e., to notice and experience arising thoughts,
emotions, and bodily sensations with acceptance, and without any
elaborative mental analysis or judgment).

Task order was held constant. The introspection conditions were
placed at the end so that participants would not continue thinking
about the upsetting issue, which may have otherwise influenced
thought content during the remaining tasks. Furthermore, because
acceptance-based introspection requires an inhibition of the default
tendency to engage in evaluative/narrative processes (Farb et al.,
2007), we placed this condition after evaluation-based introspection.
Given that the task conditions were completely different and did not
require responses, there was no concern about practice effects from one
condition to another. That is, there were no specific perceptual or
attentional task requirements that participants could improve upon
and that could translate from one task condition to another.
Additionally, before each of the six conditions we stressed to partici-
pants that they should remain as alert as possible, and they reported
that they did so (this was confirmed through post-scanning questions
regarding attention and the content of each condition). Furthermore,
we designed our conditions to be as engaging as possible. Finally,
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inspection of individual participant data did not reveal evidence of
linear changes in DN-DAN FC across the six contexts (Supplementary
Fig. 1). In fact, Fig. 5 reveals that changes in FC across context were
brain region specific, and varied in direction (anticorrelations may
increase or decrease); no global patterns emerged, suggesting that
general factors do not account for our findings.

2.4. MRI data acquisition

fMRI data were collected using a 3.0-Tesla Philips Intera MRI
scanner (Best, Netherlands) with an 8-channel phased array head coil
with parallel imaging capability (SENSE). Head motion was minimized
using a pillow, and the effect of scanner noise was minimized using
earplugs. T2*-weighted functional images were acquired parallel to the
anterior commissure/posterior commissure (AC/PC) line using a single
shot gradient echo-planar sequence (repetition time, TR=2 s;
TE=30 ms; flip angle, FA=90°; field of view, FOV=240 mm; matrix
size=80 × 80; SENSE factor=1.0). Thirty-six interleaved axial slices
covering the whole brain were acquired (3-mm thick with 1-mm skip).
Each session was six minutes in length, during which 180 functional
volumes were acquired. Data collected during the first 4 TRs were
discarded to allow for T1 equilibration effects. Before functional
imaging, a high resolution T1-weighted structural image was acquired
(170 axial slices; TR=7.7 ms; TE=3.6 ms; FOV=256 mm; matrix
size=256 × 256; voxel size=1 × 1 × 1 mm; FA=8°). Total scan time
was ~ 60 min. Head motion was minimized using a pillow, and scanner
noise was minimized with earplugs.

2.5. Preprocessing

Image preprocessing and analysis were conducted with Statistical
Parametric Mapping (SPM 8, University College London, London, UK;
http://www.fil.ion.ucl.ac.uk/spm/software/spm8). The time-series
data were slice-time corrected (to the middle slice), realigned to the
first volume to correct for between-scan motion (using a 6 parameter
rigid body transformation), and coregistered with the T1-weighted
structural image. The T1 image was bias-corrected and segmented
using template (ICBM) tissue probability maps for gray/white matter
and CSF. Parameters obtained from this step were subsequently
applied to the functional (re-sampled to 3 mm3 voxels) and
structural (re-sampled to 1 mm3 voxels) data during normalization to
MNI space. The data were spatially-smoothed using an 8-mm3 full-
width at half-maximum Gaussian kernel to reduce the impact of inter-
subject variability in brain anatomy.

To address the spurious correlations in resting-state networks
caused by head motion, we identified problematic time points during
the scan using Artifact Detection Tools (ART, www.nitrc.org/projects/
artifact_detect/). Images were specified as outliers according to the
following criteria: translational head displacement greater than .5 mm
from the previous frame, or rotational displacement greater than .02
rad from the previous frame, or global signal intensity > 4 standard
deviations above the mean signal for that session. The mean number of
identified outliers was 4.93 (range: 0−15) and did not differ across
conditions (p > .4). Each participant had at least 5.3 minutes of non-
outlier time points. Outlier images were not deleted from the time
series, but rather, modeled in the first level general linear model (GLM)
in order to keep intact the temporal structure of the data. Each outlier
was represented by a single regressor in the GLM, with a 1 for the
outlier time point and 0 elsewhere.

Using the CONN software (Whitfield-Gabrieli and Nieto-Castanon,
2012), physiological and other spurious sources of noise were esti-
mated and regressed out using the anatomical CompCor method
(Behzadi et al., 2007). Global signal regression was not used due to
fact that it mathematically introduces negative correlations, and
renders the results difficult to interpret (Murphy et al., 2009). The
normalized anatomical image for each participant was segmented into

white matter (WM), gray matter, and CSF masks using SPM8. To
minimize partial voluming with gray matter, the WM and CSF masks
were eroded by one voxel. The eroded WM and CSF masks were then
used as noise ROIs. Signals from the WM and CSF noise ROIs were
extracted from the unsmoothed functional volumes to avoid additional
risk of contaminating WM and CSF signals with gray matter signals.
The following nuisance variables were regressed out: three principal
components of the signals from the WM and CSF noise ROIs; head
motion parameters (three rotation and three translation parameters)
along with their first-order temporal derivatives; each artifact outlier
image; linear trends. A band-pass filter (0.009 Hz < f < 0.10 Hz) was
simultaneously applied to the BOLD time series during this step.

2.6. ROI definition

To explore DN-DAN interactions in relation to well-established
network boundaries, we used anatomical regions of interest (ROIs)
created by Yeo and colleagues (Krienen et al., 2014; Yeo et al., 2015)
based on their 17-network parcellation derived from the data of 1000
participants (Yeo et al., 2011) (Supplementary Fig. 2). The 17-network
parcellation was split into a set of 114 cortical regions composed of
roughly symmetric territories in the left and right hemispheres, and
were defined in relation to network boundaries, sulcal patterns, and
confidence maps. For each network, spatially connected regions were
combined to form a single ROI, whereas spatially disconnected regions
became separate ROIs. Vertices near between-network boundaries
were peeled back. The current analysis focused on 32 ROIs spanning
the DAN and three DN subsystems, and 10 ROIs spanning the
FPCN. We extracted the mean activation timeseries from each of these
ROIs.

2.7. Subsystem analysis

To examine whether anticorrelations are present for each DN
subsystem, we used the residual timeseries (following nuisance regres-
sion) for each ROI to compute condition-specific correlation matrices
consisting of all node-to-node connections. After Fisher r-to-z trans-
forming the correlation values, we averaged the z(r) values reflecting
pairwise connections between the DAN and each DN subsystem. We
first computed average FC separately for the left and right hemispheres,
and then averaged them given the similar results; that is, there was no
difference between the left and right hemispheres (paired t-tests: ps
> .19). This yielded a single value reflecting the relationship between
the DAN and each DN subsystem for each participant. These values
were submitted to a one-way repeated measures analysis of variance
(ANOVA), with subsystem as the factor.

2.8. Seed-based voxel analysis

We computed seed-based functional connectivity (FC) maps for
DAN regions in order to examine the spatial topography of antic-
orrelated voxels. The timeseries of all voxels within each DAN ROI
were averaged, and first-level correlation maps were produced by
computing the Pearson correlation between that seed timeseries and
the timeseries of all other voxels. Correlation coefficients were con-
verted to normally distributed Fisher transformed z-scores to allow for
second-level GLM analyses. Correction for multiple comparisons was
accomplished using combined height (Z > 3.1) and cluster (p < .05
FWE corrected) thresholding. Results were visualized with CARET
brain mapping software (http://brainmap.wustl.edu/caret; Van Essen,
2005; Van Essen et al., 2001). We examined the location of
anticorrelated voxels in relation to the network boundaries from Yeo
et al.'s (2011) 17-network parcellation.
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2.9. Similarity analysis

To examine potential variability of DN-DAN interactions across the
six contexts, we determined the similarity of FC values across contexts.
For each participant, we extracted and vectorized all between-network
correlations (excluding interhemispheric connections) for each context.
Many prior studies have reported stronger within-hemisphere func-
tional connectivity, and it seems likely that interhemispheric functional
connections are often indirect, mediated via other brain regions. Thus,
we excluded interhemispheric connections to provide more precise
results that are likely to reflect direct functional connections. After
applying a Fisher's r-to-z-transform, we used the Pearson correlation as
a measure of the similarity of the FC vectors for each pair of contexts.
These correlation values were Fisher transformed and averaged, to
arrive at a single value reflecting the similarity of FC across contexts.
We contrasted across-context similarity with within-context similarity,
that is, the similarity of FC values for the early period (first three
minutes) and late period (last three minutes) of each condition. The
difference between within- and across-context similarity provided an
index of the influence of context on DN-DAN FC. Importantly, we
computed similarity for each participant separately, and then deter-
mined average similarity across the group, thus accounting for
individual variability.

2.10. Machine learning classification analysis

We used a support vector machine (SVM) classifier to discern
whether an individual's current mental state could be correctly
discriminated based solely on DN-DAN FC patterns. Accurate classi-
fication would imply a unique configuration of FC values within each
context. The SVM classifier was implemented with The Spider toolbox
(Weston et al., 2005). Following prior work (Dosenbach et al., 2010),
we set the cost parameter, C, to 1, and used a radial basis function
(RBF) kernel, with sigma set to 2 (similar results were obtained with a
linear classifier; see Supplementary Fig. 3). For each individual we
created a vector consisting of all DN-DAN z-transformed correlations
(excluding interhemispheric connections) for each context. The corre-
lation vectors served as input features (96 in total), and were assigned a
value of 1 or −1 to specify the context to which they belonged. We
tested the accuracy of the classifier using leave-one-out cross valida-
tion: the classifier was trained on the FC patterns for all but one
participant, and then tested on that left-out participant, and this was
repeated for each individual. The methods used for the main analysis
were selected a priori. We selected parameters used in prior work
(Dosenbach et al., 2010) and did not attempt any type of iterative
optimization, and we did not perform any type of feature selection (i.e.,
all 96 FC values were used). Thus, our analysis method should
minimize the chance of overfitting (Skocik et al., 2016). For statistical
testing, we obtained an empirical null distribution by performing the
classification analysis 1000 times with condition labels randomly
permuted. The mean classification accuracy over the 1000 iterations
ranged from 49.62% to 50.43% with a standard deviation that ranged
from 6.03% to 6.73%, depending on the specific pair of conditions. In
each case, inspection of the null distribution revealed that 95% of these
models had accuracies below 60.4%. Classification accuracies larger
than the 95th percentile of the null distribution were considered to be
statistically significant at p < .05. To correct for multiple comparisons,
classification accuracies larger than the 99.7th percentile of the null
distribution (equivalent to 66.7% accuracy) were considered to be
statistically significant at p < .05, bonferroni corrected). To further test
the robustness of classification based on DN-DAN FC, we used 4-fold
cross-validation in which data were split into 4 equal-sized groups,
with 75% of the data used for training the classifier, and the left-out
25% used for testing the classifier. This process was repeated 4 times
until every participant was used in the testing set once. In this case, we
used a feed-forward neural network classifier that was trained using

back propagation using Rapid Miner (Hofmann and Klinkenberg,
2013). The learning rate was set to .3 and momentum was .2.
Significant classification was observed with this method as well
(Supplementary Fig. 4).

2.11. Logistic regression analysis

We also tested more directly if each condition was associated with
distinct FC values by using a logistic mixed-effects modeling approach
(Pinheiro and Bates, 2000) implemented with the lme4 package in R
(Bates et al., 2007). This approach allowed us to analyze the FC values
at the item level while modeling the within-subjects variance, as
opposed to using a between-subjects approach (e.g., relying on average
FC values across participants). Whereas a typical logistic regression (a
fixed-effects only model) does not allow for multiple instances per
person (violation of the independence assumption), a mixed-effects
model deals with non-independence by effectively estimating a random
intercept for each individual subject. This ultimately helps to account
for the extraneous differences in FC values that are inherently
introduced by having multiple observations per subject (Pinheiro and
Bates, 2000). The dependent variable was the presence (1) or absence
(0) of each condition, yielding six total regressions where each
condition was compared against all others. Participant was the random
effect in all models, while FC values were fixed effects. A prediction was
made for every FC value―was the value from a specific condition (1) or
not (0)―while accounting for the within-subjects variance. All signifi-
cance testing was done using two criteria: (1) a two-tailed α set to 0.05
and (2) a 95% confidence interval as recommended by (Nakagawa and
Cuthill, 2007). CIs were determined using bootstrapping with 1000
samples. All six logistic regression models were statistically significant
based on these criteria and the models were also significantly different
when compared to a random intercept only model (p < .05).
Comparisons to the random intercept only model highlight the fact
that FC values explained differences in the conditions above and
beyond the within-subject variability.

2.12. Dynamic FC analysis

To examine time-dependent changes in FC during rest, we examined
DN-DAN FC within 60 windows, shifted by one timepoint (2 seconds)
each time. Within each window, we calculated the average strength of FC
between the DAN and each DN subsystem by computing the mean of the
relevant pairwise (node to node) correlations (e.g., averaging the Fisher
transformed correlations for each pair of DAN-Core subsystem regions).
To limit the possibility of detecting spurious temporal fluctuations in FC,
we bandpass filtered the data (0.0167 Hz < f< 0.10 Hz) such that
frequencies lower than 1/w were removed, where w is the width of the
window (Leonardi and Van De Ville, 2015). We then computed the
percentage of windows with z(r)< 0 between the DAN and each DN
subsystem, to provide a simple measure of time periods with positive or
negative functional coupling. This was done separately for the left and
right hemispheres and then averaged given that there was no difference
(p's > .23). A one-way repeated measures ANOVA with subsystem as the
factor and follow up paired-samples t-tests were used to compare
dynamic FC patterns across the DN subsystems.

2.12.1. Temporal co-evolution of network interactions
To examine the temporal co-evolution of interconnected nodes,

Bassett and colleagues devised a method of identifying groups of FC
connections with statistically similar temporal profiles (Bassett et al.,
2014; Davison et al., 2015). This approach first determines the strength
of time-varying FC between each pair of nodes (regions), providing
numerous time-series of edge-weights (connection strength). This
approach then uses the correlation coefficient as a measure of the
linear association between sets of edge-weight time series, to discern
groups of functional connections that display similar changes in
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strength across time. Here, we adopted this approach, but instead of
focusing on node-to-node interactions, we focused on network-to-
network interactions defined based on the boundaries of Yeo et al.
(2011). Within each 60-second window, we computed the average
strength of FC between the DAN and each DN subsystem, and between
the FPCN and each DN subsystem, and between the FPCN and DAN.
This provided several time-series of between-network FC values
reflecting changes across time in the strength of interactions between
each pair of networks. We then computed the correlation between each
pair of time-series to examine the linear relationship between changes
across time in the strength of interactions between each pair of
networks. For example, we computed the strength of DN-DAN FC
across time and the strength of FPCN-DAN FC across time, and then
determined if these changes were correlated. A significant correlation
would imply that time-dependent DN-DAN interactions are coordi-
nated with time-dependent FPCN-DAN interactions, and reveal that
dynamic changes in FC values across multiple large-scale networks
evolve in concert. We computed correlations for the left and right
hemispheres separately and then averaged them (following Fisher r-to-
z transform) given that the values were highly similar in each case (that
is, there was no effect of hemisphere, all ps > .05, corrected for multiple
comparisons). To account for the number of correlations performed,
we used a Bonferroni correction, such that results at p < .004,
uncorrected, were considered statistically significant at p < .05, cor-
rected for multiple comparisons.

We conducted a control analysis to rule out the possibility that
temporal co-evolution of network interactions could be driven by
participant motion. We examined total motion and framewise displa-
cement. We computed the average amount of motion in each window,
just as with between-network FC, and then computed the correlation
between changes across time in motion and changes across time in
between-network FC for each pair of networks. For each participant we
then used the Fisher r-to-z transform of the correlations and deter-
mined the mean relationship between temporal variation in motion
and between network FC, separately for each type of motion, and each
of the six task conditions. These values were submitted to a one-sample
t-test to assess statistical significance at the group level, based on
α=.05, corrected for multiple comparisons.

3. Results

3.1. Study 1

3.1.1. Effect sizes of functional connectivity between the DN and DAN
Our first question concerned the strength of negative FC between

the DN and DAN. To examine this, we summarized effect sizes from 20
studies of DN-DAN interactions (Fig. 1; Table 1). We noted a number
of variables including whether preprocessing included GSR. As illu-
strated in Fig. 1, studies that used GSR show the expected effect of
negative FC between the DN and DAN with a median effect size of
r=−.24 (SD=.28; 95% CI: −.50 to −.18). A contrasting picture emerged
from studies that did not use GSR. These studies generally show a weak
negative correlation or even a small positive correlation between the
DN and DAN, with a median effect size of r=−.06 (SD=.20; 95% CI:
−.15 to .08). These findings suggest that the DN and DAN may have an
independent relationship. Given that GSR is known to shift the
distribution of correlation coefficients, this preprocessing step inflates
the magnitude of negative FC between the DN and DAN and may give a
distorted picture of their associations. Notably, many studies that did
not use GSR included multiple preprocessing steps to carefully mini-
mize the effect of noise (e.g., regressing out signals related to
respiratory and cardiac effects, white matter and CSF timecourses,
and outlier time points) and still reported only weak negative correla-
tions (Table 1).

3.2. Study 2

3.2.1. Patterns of functional connectivity between the DAN and each
DN subsystem

We next examined the variability of DN-DAN interactions. First, we
considered regional variability, and examined whether the DAN
exhibits similar or distinct patterns of FC with the three DN subsystems
during rest. To explore these interactions in relation to well-established
network boundaries, we used regions of interest (ROIs) created by Yeo
and colleagues (Krienen et al., 2014; Yeo et al., 2015) based on their
17-network parcellation derived from the data of 1,000 participants
(Yeo et al., 2011) (Fig. 2A; Supplementary Fig. 2). We extracted the
mean activation timeseries from each of 32 ROIs spanning the DAN
and three DN subsystems, and calculated the timeseries correlation
between pairs of regions belonging to the DN and DAN. We then
computed the average strength of functional connectivity (FC) between
the DAN and each DN subsystem. The results demonstrated that DN-
DAN interactions significantly varied across DN subsystems [F(2, 46)
=17.78, p < .001] (Fig. 2B). The DAN exhibited modest negative FC
with the Core subsystem (r=− .13, p < .001), but was uncorrelated with
the dorsomedial prefrontal subsystem (r=− .01, p=.56), and showed
very weak but reliable negative FC with the medial temporal lobe
subsystem (r=− .04, p=.028) (Fig. 2B). Negative FC was stronger for
the Core subsystem relative to the dorsomedial prefrontal and medial
temporal lobe subsystems [t(23)=5.59, p < .001 and t(23)=4.02,
p=.001, respectively].

Supporting this, whole-brain voxel-wise analyses revealed that DAN
seed regions exhibited negative FC with voxels primarily located within
the borders of the Core subsystem (Fig. 2C; Supplementary Fig. 5).
Similarly, FC fingerprints for DAN ROIs revealed that negative FC was
mainly observed with Core subsystem regions (Fig. 2D). Thus, the
strength of DN-DAN FC is spatially specific. For example, negative FC
was more likely to be observed in the rostromedial prefrontal cortex
than adjacent dorsomedial prefrontal cortex. Moreover, region aMT of
the DAN did not exhibit anticorrelation with any DN regions. Together,
these findings demonstrate regional variability in DN-DAN interac-
tions, with little evidence of negative FC involving the dorsomedial
prefrontal and medial temporal lobe subsystems.

3.2.2. Stability of DN-DAN functional connectivity across cognitive
states

Next, we examined whether DN-DAN interactions exhibit stability
across different cognitive states. Prior work has examined the stability
of FC patterns by computing the correlation between context-specific
connectivity matrices (Cole et al., 2014; Geerligs et al., 2015; Krienen
et al., 2014). Strong correlations imply that FC patterns are highly

Fig. 1. Effect size of DN-DAN functional connectivity across 20 studies. Each point
represents mean between-network functional connectivity from one study. Seven studies
reported results with and without GSR (global signal regression).
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similar across contexts, thus suggesting stability. Here, we adopted this
approach, but focused specifically on DN-DAN connections rather than
whole-brain FC patterns (Fig. 3A). As illustrated in Fig. 3B, the
similarity between DN-DAN FC patterns across different cognitive
contexts was modest. Critically, across-context similarity was signifi-
cantly lower than within-context similarity―that is, the similarity of
DN-DAN FC from the first half to the second half of each context. This
was the case when considering all DN as a whole [paired t-test: t(23)
=10.46, p < .001], and when breaking down the analysis by DN
subsystem [Core: t(23)=7.84, p < .001; dorsomedial prefrontal: t(23)
=5.61, p < .001; medial temporal lobe: t(23)=9.35, p < .001]. The
sizable difference between within- and across-context similarity reveals
a substantial effect of context on DN-DAN interactions. Importantly,
this was not due to the separation of contexts in time; nearly identical
results were obtained when comparing FC during one context to FC
during the immediately preceding context (Supplementary Fig. 6).
These findings reveal that DN-DAN interactions vary considerably
across different cognitive states. Notably, control analyses ruled out the
possibility that the effect of context was driven by motion (see
Supplementary Results).

We next sought to determine whether it is possible to accurately
distinguish the cognitive state of an individual based on a classifier
trained only on FC data from other participants. If possible, this would
suggest that DN-DAN FC patterns flexibly reconfigure in each context
in a manner that is generalizable across participants. A support vector
machine (SVM) classifier was fed training data (a vector consisting of
all DN-DAN correlations) and learned a model that maximized the
separation of two cognitive states (e.g., rest and movie viewing) in
multidimensional space, based on the pattern FC values defining each
context. The SVM then used its model of the training data to predict the
labels of new data. Classifier accuracy was determined using leave-one-
out cross validation, and statistical significance was established using
permutation testing. As depicted in Fig. 4, the SVM achieved classifica-
tion accuracy that was considerably above chance-level in 12/15

comparisons (ps < .05, uncorrected), and 8 of those comparisons were
significant when correcting for multiple comparisons (ps < .05, bonfer-
roni corrected). Supporting the robustness of these results, significant
classification was also obtained using 4-fold classification, with 75% of
the data used for training and 25% used for testing (Supplementary
Fig. 4). This suggests that the SVM classifier could distinguish pairs of
cognitive states solely on the basis of DN-DAN FC patterns, thereby
implying a relatively unique configuration of DN-DAN interactions
within each context that was reliable across participants.

To examine more directly whether the six contexts could be
discriminated based on DN-DAN FC values we used mixed-effects
logistic regression. Rather than pairwise comparisons, this analysis
contrasted each context against all others simultaneously. We conducted
six regression analyses, and found that each context could be signifi-
cantly predicted against all others (all p's < .05) [Rest vs others: b=−.33
(95% CI: −.50 to −.16); Movie vs others: b=−1.01 (95% CI: −1.19 to
−.82); Artwork vs others: b=−.30 (95% CI: −.47 to −.14); Shopping vs
others: b=.28 (95% CI: .09 to .46); evaluation-based introspection vs
others: b=.58 (95% CI: .40 to .75); acceptance-based introspection vs
others: b=.73 (95% CI: .54 to .92)]. This provides evidence that each
context had a distinct FC pattern from the other five contexts.

We next conducted whole-brain seed-based analyses to provide
more detail regarding the direction of changes in DN-DAN FC across
different cognitive states. The results demonstrated highly variably
patterns (Fig. 5). A pair of DN-DAN regions could exhibit negative FC
in one context, but no correlation or even positive FC in other contexts
(e.g., see aMT-pIPL in Fig. 5). Moreover, different region pairs could
exhibit changes across contexts in opposite directions. For example, the
frontal eye fields and dorsomedial prefrontal cortex exhibited stronger
negative FC during the movie condition relative to rest, whereas the
anterior intraparietal sulcus and retrosplenial cortex exhibited weaker
negative FC during the movie condition relative to rest. These region-
specific patterns further underscore regional heterogeneity in DN-DAN
interactions.

Table 1
Effect size of DN-DAN functional connectivity across studies.

Study N Correlation (r) Noise removal Regions

Golland et al., 2007 8 0.09 GSR Extrinsic-Intrinsic networks
Kelly et al., 2008 26 −0.89 GSR DN-TPN
Murphy et al., 2009 12 −0.72 GSR DN-TPN

0.18 3 DN-TPN
Chang and Glover, 2009 15 −0.35 GSR PCC-DAN

−0.25 2, 3 PCC-DAN
Van Dijk et al., 2010 98 −0.24 GSR DN-DAN

0.16 1 DN-DAN
Anderson et al., 2011 1278 0.05 1, 2 DN-DAN
Fornito et al., 2012 16 −0.50 GSR DN-DAN

−0.40 1, 2 DN-DAN
Lee et al., 2012 17 −0.74 GSR DN-DAN
Chai et al., 2012 15 −0.20 GSR MPFC-DAN

−0.12 1, 2 MPFC-DAN
Gao and Lin., 2012 19 −0.20 GSR DN-DAN
De Havas et al., 2012 26 −0.26 GSR PCC-DAN
Josipovic et al., 2012 14 −0.16 GSR Extrinsic-Intrinsic networks
Cole et al., 2014 118 −0.07 GSR DN-DAN
Chai et al., 2014 19 −0.15 1, 2 DN-DAN
Wotruba et al., 2014 29 −0.21 1, 2 DN-TPN
Holmes et al., 2015 1570 −0.18 GSR DN-DAN
Yeo et al., 2015 68 −0.50 GSR DN-DAN

0.38 1, 2 DN-DAN
Spreng et al., 2016 54 −0.04 GSR DN-DAN

0.08 1, 2 DN-DAN
Amer et al., 2016 16 −0.06 1, 2 DN-DAN
Current study 24 −0.06 1, 2 DN-DAN

Note: Numbers specify preprocessing steps used in studies that did not employ global signal regression (GSR): 1 = regression of motion parameters; 2 = regression of cerebrospinal fluid
and white matter timecourses; 3 = regression of respiratory- and cardiac-related signals. DN, default network; DAN, dorsal attention network; TPN, task-positive network; MPFC,
medial prefrontal cortex; PCC, posterior cingulate cortex; GSR, global signal regression.
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Fig. 2. Anticorrelation as a function of DN subsystem. (A) Networks from Yeo et al. (2011) used for ROIs. (B) Mean correlation between the DAN and each DN subsystem. Data for each
participant (black dots), with mean (red line), 95% CI (red shaded area) and 1 SD (purple lines). (C) Seed-based connectivity analyses showing negative connectivity with DAN regions
(Z > 3.1, p < .05 FWE corrected for cluster extent), with the borders of each DN subsystem highlighted. Color bar represents t-values. DAN seeds: FEF, frontal eye fields; aIPS/SPL,
anterior intraparietal sulcus/superior parietal lobule; PrCv, ventral precentral cortex; aMT, anterior middle temporal region. Left hemisphere data is presented (see Supplementary
Fig. 5 for right hemisphere data). (D) Functional connectivity fingerprints for each DAN region. Core subsystem: RMPFC, rostromedial prefrontal cortex; PCC, posterior cingulate
cortex; pIPL, posterior inferior parietal lobule; SFS, superior frontal sulcus; rSTS, rostral superior temporal sulcus. DM subsystem: DMPFC, dorsomedial prefrontal cortex, TPJ,
temporoparietal junction, TP/LTC, temporopolar cortex/lateral temporal cortex; IFG, inferior frontal gyrus, pDLPFC, posterior dorsolateral prefrontal cortex. MTL subsystem: MTL,
medial temporal lobe; RSC, retrosplenial cortex; vpIPL, ventral posterior inferior parietal lobule. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 3. Comparison of within- and across-context similarity of DN-DAN connectivity. (A) Example of the analysis approach for one participant. We extracted DN-DAN correlation values
(highlighted by the black box), and then calculated the correlation between the vector of FC values for each pair of contexts, and between the vector of FC values for the early and late
period within each context. (B) Mean within- and across-context similarity of anticorrelations. DAN, dorsal attention network; DN, entire default network; DM, dorsomedial prefrontal
subsystem; MTL, medial temporal lobe subsystem. Error bars reflect within-subject SEM (Loftus and Masson, 1994).
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3.2.3. Self-reported experience
Contextual modulation of DN-DAN FC may relate to certain aspects

of the task conditions we used. Although our conditions did not vary in
a systematic manner, we did collect self-reports regarding several
variables including the difficulty of the “tasks”, level of attention, and
familiarity and enjoyment with the stimuli in the movie, artwork, and
shopping conditions (Table 2). Importantly, participants reported high
levels of attention during the conditions with external stimuli. There
was a main effect of condition on attention [F(2, 46)=5.92, p=.005] and
enjoyment [F(2, 46)=40.25, p < .001], with the highest levels in both
cases being reported during the artwork condition. The effect of
condition on stimulus familiarity was not statistically significant [F(2,
46)=1.94, p=.16]. Finally, there was a main effect of condition on
difficulty [F(4, 92)=10.97, p < .001], with the movie and artwork
conditions being rated as the easiest conditions. Our sample size does
not afford enough power for a proper individual differences analysis
examining the correlation between these self-report variables and the
strength of DN-DAN functional connectivity. However, for complete-
ness we report this information for exploratory purposes in
Supplementary Table 2. The fact that participants found the movie
and artwork conditions the easiest (and there was the least amount of
inter-subject variability) may have resulted in the most distinct FC
patterns, and this could potentially explain why the SVM classifier was
most accurate in distinguishing these conditions from the others.

3.2.4. Stability of DN-DAN functional connectivity across time
DN-DAN interactions are generally summarized as a single correla-

tion value reflecting connection strength across a long period of time

(e.g., 5–10 min). While useful, this approach cannot reveal potential
temporal variation in DN-DAN interactions. If DN-DAN FC strength is
influenced by an individual's current mental state, then it may vary
across time even during rest in accordance with changing mental
content. We investigated dynamic changes in DN-DAN FC using a 60-
second sliding window approach (Hutchison et al., 2013). Prior work
has shown that functionally-relevant FC patterns can be isolated from
~ 60 seconds of data (Gonzalez-Castillo et al., 2015; Leonardi and Van
De Ville, 2015; Liegeois et al., 2015; Shirer et al., 2012). For each
participant, we computed average DN-DAN FC within each window
during rest, and then calculated the percentage of windows during
which negative FC was present. The results demonstrated considerable
temporal variability, with the DN and DAN alternating between
negatively and positively correlated states (Fig. 6A). On average, the
DAN exhibited negative FC in 67.09% of windows with the Core
subsystem, in 52.75% of windows with the dorsomedial prefrontal
subsystem, and in 56.16% of windows with medial temporal lobe
subsystem (Fig. 6B). The number of windows with negative FC varied
by subsystem [F(2, 46)=8.95, p =.001], with a higher number for the
Core subsystem relative to the dorsomedial prefrontal and medial
temporal lobe subsystems (paired t-test: t(23)=4.38, p < .001 and t(23)
=3.68, p=.001, respectively), recapitulating the distinction between the
subsystems observed in the standard analysis. However, even in the
case of the Core subsystem there were frequent shifts away from
negative FC. Interestingly, temporal variation in FC between the DAN
and each DN subsystem followed somewhat unique patterns, high-
lighting the importance of separating the DN into distinct subsystems
rather than treating it as a homogenous network.

3.2.5. Temporal co-evolution of large-scale network interactions
Traditionally, studies have examined temporal variation in the

strength of FC between a pair of regions or a pair of networks.
However, it is possible that time-varying FC may involve larger
coordinated dynamics involving multiple networks. Here, we assessed
the possibility that interactions between the DAN and DN evolve across
time in a manner that is coordinated with interactions with the
frontoparietal control network (FPCN) (Supplementary Fig. 8), which
has been shown to flexibly couple with these networks. We first
computed the strength of FC between each pair of networks within
60-second windows. This provided a time-series of between-network
FC values. We then computed pairwise correlations to measure the
linear association between the time-series of FC values―our measure of
the co-evolution of network interactions. That is, we examined whether
sets of between-network connections exhibited statistically similar
temporal profiles.

The results demonstrated that periods of time characterized by
stronger negative FPCN-DAN coupling were associated with stronger
negative DAN-Core coupling (Figs. 7A and 7B). This was a robust
relationship, observed in every context [all z(r) > .56, p's < .05,
Bonferroni corrected]. A similar pattern was observed for the dor-
somedial prefrontal (DM) subsystem. In every context, when the FPCN
became more negatively coupled with the DAN, the DAN became more
negatively coupled with the DM [all z(r) > .54, p's < .05, Bonferroni
corrected] (Figs. 7A and 7B). A different pattern was observed for the
medial temporal lobe (MTL) subsystem of the DN. Changes across time
in the strength of FPCN-DAN coupling were unrelated to changes
across time in the strength of DAN-MTL coupling (all p's > .05,
Bonferroni corrected).

Notably, with one exception, changes across time in the strength of
FPCN-DN coupling were unrelated to changes across time in the
strength of DAN-DN coupling, and this was true for each of the DN
subsystems (all p's > .05, Bonferroni corrected). The one exception was
a significant relationship between FPCN-MT coupling and DAN-MT
coupling during the movie condition [z(r)=−.21, p < .05, Bonferroni
corrected].This suggests that dynamic network co-evolution is specific
to particular network interactions and cannot be attributed to a general

Fig. 4. Accuracy of the SVM classifier in distinguishing each pair of cognitive contexts.
Classification accuracy was significantly above chance level in all cases except for the rest-
shopping, shopping-evaluation, and evaluation-acceptance comparisons. Error bars
reflect between-subject SEM. *p < .05, uncorrected. **p < .05, bonferroni corrected.

Table 2
Self-reported experience in the current study.

Condition

Variable Movie Artwork Shopping Evaluation Acceptance

Difficulty 1.06
(1.15)

1.73 (1.11) 2.42 (2.06) 3.02 (1.90) 3.88 (1.73)

Attention 5.98
(1.03)

6.40 (.071) 5.75 (1.18)

Familiarity/
Expertise

3.81
(2.05)

3.90 (1.85) 3.08 (1.67)

Enjoyment of
task

4.27
(1.66)

6.38 (.71) 3.00 (1.59)

Note. Participants rated each variable on a 7-point scale from 1=low to 7=high. Values
reflect mean across participants with standard deviation in parentheses.

M.L. Dixon et al. NeuroImage 147 (2017) 632–649

640



effect such as global fluctuations in BOLD signal. In particular, when
the FPCN became more negatively coupled with the DAN, the DAN
became more negatively coupled with the Core and dorsomedial
prefrontal subsystems (Fig. 8).

Importantly, within each context, temporal variation in the strength
of between-network FC was uncorrelated with temporal variation in the
amount of participant motion. We found no significant relationships at
the group level for total motion [all |z(r)| < .07, p's > .22], or framewise
displacement [all |z(r)| < .07, p's > .16]. There was also no evidence of
systematic relationships at the level of individual participants. We
found 25 out of 284 correlations (~ 9%) were significantly positive at p
< .05, bonferroni corrected, and 25 out of 284 correlations (~ 9%) were
significantly negative at p < .05, bonferroni corrected. Thus, while some
participants did show a significant correlation between temporal
variation in the strength of between-network FC and motion in some

contexts, this was a rare occurrence, and the correlations were not
systematically positive or negative. Thus, temporal co-evolution of
network interactions cannot be explained by participant motion.

4. Discussion

Delineating the nature of functional interactions between the DN
and DAN is critical for understanding how attention is efficiently
allocated to internal conceptual thoughts and external perceptual
information. While prior work suggested that DN-DAN anticorrelation
is an intrinsic aspect of functional brain organization based on resting
state data, our findings suggest that the DN and DAN have an
independent relationship and demonstrate that interactions between
these networks exhibit considerable variability: the DAN exhibited
differential FC with the three DN subsystems; DN-DAN interactions

Fig. 5. Whole-brain seed-based analyses. Positive and negative functional connectivity for each DAN seed region and context. Negative FC between the DN and DAN flexibly increased
and decreased in different cognitive contexts relative to rest. For illustration purposes, we use a slightly liberal threshold to show the full extent of positively and negatively correlated
voxels in each context (Z > 2.57, p < .05 FDR cluster corrected). Black star denotes location of DAN seed regions. Right panel: mean FC strength, z(r), for specific pairs of DN-DAN ROIs
for each context. Results for the left hemisphere are presented (see Supplementary Fig. 7 for right hemisphere data). Based on visual inspection the whole-brain analysis in the left panel,
we identified DN regions (indicated with black arrow) that appeared to exhibit an effect of context, and then plotted the mean FC between the DAN and DN seeds for each context in the
right panel. This was intended was for illustration purposes only. Color bar shows t-values. Abbreviations: LTC/TP, lateral temporal cortex/temporopolar cortex; DMPFC, dorsomedial
prefrontal cortex; RSC/vPCC, retrosplenial cortex/ventral posterior cingulate cortex; pIPL, posterior inferior parietal lobule; RMPFC, rostromedial prefrontal cortex; pDLPFC, posterior
dorsolateral prefrontal cortex; IFG, inferior frontal gyrus. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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flexibly reconfigured across different cognitive states; and DN-DAN FC
fluctuated across time between periods of anticorrelation and periods
of positive correlation. Notably, there was one consistent relationship:
temporal fluctuations in FPCN-DAN coupling were correlated with
changes across time in the strength of coupling between the DAN and
Core and dorsomedial prefrontal subsystems within every context,
revealing evidence of temporal co-evolution of large-scale network
interactions. Together, these findings suggest that the DN and DAN
and the functions they support are not antagonistic, at least in the
context of the six different cognitive states that we examined.

4.1. Are the DN and DAN anticorrelated?

While the notion of anticorrelation is often highlighted in papers
that examine DN-DAN interactions, rarely is there discussion of the
actual effect size. We therefore conducted a meta-analysis to determine
the strength of FC between the DN and DAN, and to examine the
influence of global signal regression (GSR) when included as part of
preprocessing. Studies that did not use GSR reported weak negative
correlations or even positive correlations between the DN and DAN,
with a median effect size of r=−.06 (Amer et al., 2016; Anderson et al.,
2011; Chai et al., 2012; Chai et al., 2014; Chang and Glover, 2009; Gao
and Lin, 2012; Golland et al., 2007; Murphy et al., 2009; Spreng et al.,
2016; Van Dijk et al., 2010; Wotruba et al., 2013; Yeo et al., 2015). The
effect sizes suggest more of a weak negative coupling or an independent
relationship rather than a competitive anticorrelated relationship,
highlighting a disconnect between observed effect sizes and the
language used to describe DN-DAN interactions. Studies that used

GSR found stronger negative FC (median effect size of r=−.24),
however, GSR is known to distort the distribution of correlations,
making them difficult to interpret (Murphy et al., 2009; Van Dijk et al.,
2010). GSR inflates the magnitude of true negative correlations and
shifts correlations near r=0 into artifactual negative correlations.

Several caveats should be taken seriously when interpreting the
results of our meta-analysis: (i) we only included studies that reported
an effect size and therefore did not perform an exhaustive analysis.
Thus, it is quite possible that there are studies showing strong antic-
orrelation that were not included in this analysis; (ii) there is
considerable variability in effect size across studies suggesting that
the median effect size reported here should be interpreted cautiously;
(iii) studies differed in network definitions; (iv) studies differed in
preprocessing steps (aside from inclusion/exclusion of GSR); and (v)
there may be some measurement error related to approximating some
of the effect sizes from figures. While considering these limitations, this
analysis clearly reveals that many studies have observed little to no
negative FC between the DN and DAN. This calls into question the idea
that these networks are strictly competitive.

It is possible that DN-DAN anticorrelation is a real but transient
phenomenon, dependent on cognitive state. The idea that anticorrela-
tion may be a transient rather than persistent aspect of functional
network organization is supported by our dynamic FC analysis, which
revealed periods of time when the DN and DAN showed strong
negative FC (that is, anticorrelation), but also periods of time when
these networks exhibited positive FC. Thus anticorrelation may dyna-
mically emerge during some cognitive states, but does not appear to be
an invariant feature of functional brain organization. Notably, we also

Fig. 6. Temporal variability in DN-DAN interactions during rest. (A) Data for four randomly chosen example participants demonstrating average correlation strength between the DAN
and each DN subsystem within successive 60-second windows. (B) Percentage of windows with negative FC between the DN and DAN. DM, dorsomedial prefrontal subsystem; MTL,
medial temporal lobe subsystem. Error bars represent between-subject SEM.
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found that region aMT of the DAN exhibited no evidence of negative FC
with any DN regions during rest. In fact, during some conditions this
region exhibited positive FC with DN regions including the posterior
inferior parietal lobule, temporoparietal junction, inferior frontal
gyrus, and temporopolar cortex. This finding suggests that aMT may
provide a bridge between the DN and DAN, and underscores the fact
that these networks are not strictly antagonistic. Together, these results
suggest that it is necessary to re-conceptualize the relationship
between the DN and DAN, as well as the idea of a competition between
internally-oriented and externally-oriented cognitive processes.
Indeed, considerable evidence suggests a more complex picture, with
many cognitive states requiring a combination of internally-oriented
thoughts and externally-oriented perceptual information (Dixon et al.,
2014b).

Although the DN and DAN often show differences in overall
activation levels in tasks that require perceptual attention versus
introspective processing, this does not imply that they must exhibit

anticorrelated signal fluctuations. Indeed, evidence suggests that over-
all activation levels may be orthogonal to functional coupling patterns
(Murphy et al., 2016). For example, a recent study found that the
posterior cingulate cortex exhibited diminished activation levels during
a demanding semantic task, yet simultaneously exhibited increased
functional coupling with “task-positive” regions (Krieger-Redwood
et al., 2016). Thus, ongoing inter-regional interactions may support
information processing that is, to some extent, independent from task-
related activation levels. It is important to note that this re-conceptua-
lization of DN-DAN interactions does not take away from the sig-
nificance of previously reported age-related and group differences in
DN-DAN interactions (Chai et al., 2014; Gao et al., 2013; Keller et al.,
2015; Spreng et al., 2016). These differences likely contribute to age-
and group-related differences in cognitive abilities. The findings
reported here have implications for interpreting DN-DAN interactions
and the meaning of changes in certain groups of participants, but do
not question the differences themselves.

Fig. 7. Temporal co-evolution of network interactions. (A)Mean strength of temporal co-evolution. Error bars reflect between-subject SEM. (B) Data for an example participant during
the movie viewing condition demonstrating changes across time in functional connectivity between each pair of networks. Top: Changes across time in FPCN-DAN coupling are
positively correlated with changes across time in DAN-Core coupling. Middle: Changes across time in FPCN-DAN coupling are positively correlated with changes across time in DAN-
dorsomedial prefrontal (DM) subsystem coupling. Bottom: Changes across time in FPCN-DAN coupling are unrelated to changes across time in DAN-MTL coupling.
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4.2. Variable interactions between the DAN and DN subsystems

A previous study noted spatial heterogeneity in FC between the DN
and DAN, with some connections exhibiting positive correlation and
other connections exhibiting negative correlation (Anderson et al.,
2011). Here, we extend this work by examining interactions in relation
to the well-established division of the DN into three subsystems
(Andrews-Hanna et al., 2010). The DAN exhibited modest negative
FC with the Core subsystem, but was uncorrelated with the dorsome-
dial prefrontal and medial temporal lobe subsystems. These findings
are to some extent consistent with Fox et al.'s (2005) original report of
DN-DAN anticorrelation, which was based on seed regions located
within the Core subsystem, but further emphasize that the DN is not a
homogenous network (Andrews-Hanna et al., 2010; Andrews-
Hanna et al., 2014). Even beyond the finding that the DAN exhibited
distinct interactions with the three DN subsystems, we found that
specific node-to-node connections between the DN and DAN exhibited
different patterns of change in correlation strength across contexts. For
example, the frontal eye fields and dorsomedial prefrontal cortex
exhibited stronger negative FC during the movie condition relative to
rest, whereas the anterior intraparietal sulcus and retrosplenial cortex
exhibited weaker negative FC during the movie condition relative to
rest. Together, these results suggest that a single correlation value
reflecting DN-DAN interactions may overlook the variability present at
a finer spatial scale, and potentially give a misleading impression of
network dynamics.

The DN Core is recruited during a variety of tasks involving self-
referential processing (Denny et al., 2012), value-based decision
making (Bartra et al., 2013), mind wandering (Fox et al., 2015),

autobiographical memory (Andrews-Hanna et al., 2014), and reflection
on personal goals (D'Argembeau et al., 2010). This subsystem may
therefore play a role in thinking about the self as an object of awareness
with particular goals, attributes, and a linear narrative that connects
past, present, and future experience―that is, an autobiographical mode
of self processing (Araujo et al., 2015; Christoff et al., 2011; Denny
et al., 2012; Farb et al., 2007; Gallagher, 2000; Murray et al., 2012;
Schmitz and Johnson, 2007; Wagner et al., 2012). One possibility is
that periods of time characterized by negative FC between the DAN and
DN Core subsystem reflects the focusing of attention towards abstract
self-related information and away from more concrete perceptual
information, whereas periods of positive FC may allow perception to
inform self-referential thinking or vice versa. However, there is much
still to be learned about the functions of the DN Core (e.g., Konishi
et al., 2015; Leech, Braga, and Sharp, 2012) and the implications of
these dynamics for understanding cognitive functioning.

In agreement with our results, numerous lines of evidence suggest
that mentalizing and mnemonic processes that may be associated with
the dorsomedial prefrontal and medial temporal lobe subsystems are
not inherently antagonistic with perceptual processes associated with
the DAN (Dixon et al., 2014b). For example, memory can facilitate the
deployment of attention to the external environment (e.g., remember-
ing where one last put the car keys) and this is subserved by co-
activation of medial temporal and DAN regions (Summerfield et al.,
2006). Similarly, another study found that working memory perfor-
mance was facilitated for famous relative to unfamiliar faces, and this
was accompanied by medial temporal lobe subsystem activation,
consistent with the idea that mnemonic representations can facilitate
perceptual encoding when it is congruent with task demands (Spreng
et al., 2014). Furthermore, during the encoding of new information,
medial temporal regions decouple from other DN regions
(Huijbers et al., 2011), and become more sensitive to afferent sensory
input, as a result of acetylcholine's modulatory influence on medial
temporal lobe circuit dynamics (Hasselmo and McGaughy, 2004).
Finally, during rest, the spontaneous reactivation of information stored
in memory may in some cases lead to an autobiographical stream of
thought that becomes elaborated upon by the Core subsystem, but in
other cases may trigger a sensorimotor stream of thought (e.g., an
imagined interaction with the environment) that may elicit cooperative
medial temporal lobe subsystem-DAN dynamics. Accordingly, one
hypothesis is that the medial temporal lobe subsystem may go in and
out of phase with the DAN depending on whether mnemonic and
perceptual processes pertain to the same or different goals, thus
resulting in uncorrelated activation on average.

Similarly, mentalizing and perceptual processing may sometimes
operate in concert, as perception of body language, facial expression,
and eye-gaze often inform the inferences we make about others'
thoughts, and vice versa (Baron-Cohen et al., 2001). Supporting this
idea, coactivation of the DAN and dorsomedial subsystem is observed
when individuals view dynamic animations and attend to the social
intentional meaning of the movements (Tavares et al., 2008). Thus,
mentalizing and memory processes are sometimes, but not always
associated with perceptual decoupling (Schooler et al., 2011;
Smallwood et al., 2012). The brain has limited attentional resources,
and consequently, has difficulty performing more than one goal at a
time (Marois and Ivanoff, 2005). When mentalizing and mnemonic
processes can be linked to perceptual processing in service of a unified
goal, there may be little to no interference, but when they pertain to
different goals (e.g., during task-unrelated thought) they are likely to
compete (Dixon et al., 2014b). Alternating anticorrelation and positive
correlation between the DAN and these subsystems during rest may
reflect the exploration of frequently occurring network states.

4.3. Contextual variability of DN-DAN interactions

A burgeoning literature has revealed context-dependent FC pat-

Fig. 8. Schematic illustration of temporal co-evolution of network interactions. As the
FPCN becomes more anticorrelated with the DAN, the DAN becomes more anticorrelated
with the Core and dorsomedial prefrontal subsystems of the DN. As the FPCN becomes
more positively correlated with the DAN, the DAN becomes more positively correlated
with the Core and dorsomedial prefrontal subsystems. Functional connections between
the FPCN and DN Core and dorsomedial prefrontal subsystems are generally positive,
and are not shown because they fluctuate across time independently of DN-DAN
interactions.
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terns, with an emerging picture of the brain as a dynamic system that
flexibly adapts to changes in internal and external states (Allen et al.,
2014; Braun et al., 2015; Cole et al., 2013; Davison et al., 2015; Fornito
et al., 2012; Geerligs et al., 2015; Gonzalez-Castillo et al., 2015;
Krienen et al., 2014; Kucyi et al., 2016; Mennes et al., 2013; Milazzo
et al., 2014; Shine et al., 2016; Shirer et al., 2012; Simony et al., 2016;
Spreng et al., 2010). FC patterns have been linked to individuals'
mental states (Andrews-Hanna, Reidler, Huang, and Buckner, 2010;
Doucet et al., 2012; Kucyi et al., 2016), and flexibility of FC patterns
appears to be adaptive, given that it correlates with task performance
(Braun et al., 2015; Fornito et al., 2012; Hermundstad et al., 2014).
Building upon this work, we report convergent findings revealing that
DN-DAN interactions vary across different cognitive states.

Our similarity analysis revealed little stability in DAN-DN FC across
different cognitive contexts. Consistent with this, a prior study found
that anticorrelations were more similar from the early period to the late
period of a flanker task (r=.61) than between rest and the flanker task
(r=.34) (Kelly et al., 2008). This is comparable to the values that we
observed, and suggests that DN-DAN interactions are dynamically
tailored to one's current context. This complements other work
showing context-dependent DN-FPCN interactions (Fornito et al.,
2012; Spreng et al., 2010). Furthermore, we found that a machine
learning classifier was able to distinguish each pair of contexts solely on
the basis of DN-DAN FC patterns. While the classifier's ability to
distinguish cognitive states in the current study was noticeably less
accurate than results obtained in other studies using whole-brain FC
patterns (Gonzalez-Castillo et al., 2015; Milazzo et al., 2014; Shirer
et al., 2012), it is quite remarkable that patterns of DN-DAN FC are
sufficiently distinct in each context to allow for above chance-level
classification. These findings emphasize flexibility rather than stability
in the DN-DAN relationship. Accordingly, DN-DAN interactions during
rest do not necessarily reflect the nature of interactions between these
networks in general, because other network configurations could occur
in other contexts that may be consistent with, or distinct from, the
pattern observed during rest. Individual and group differences in DN-
DAN FC during rest could potentially reflect differences in mental state
rather than fundamental differences in brain function, although
parallel age-related reductions in anticorrelation during task and rest
have been observed (Spreng et al., 2016).

Throughout the manuscript we have not emphasized the nature of
the task conditions used in the present study because our goal was not
to describe the way in which the DN and DAN interact during
particular mental states. Rather, our goal was to test a fundamental
hypothesis about the relationship between these networks, and to look
for evidence of contextual variability, which we did observe. Our results
have broad implications as they robustly demonstrate that DN-DAN
interactions are not a stable, fixed feature of brain organization. While
our findings suggest a need to re-conceptualize the nature of DN-DAN
interactions, our limited range of task conditions means that we cannot
specify the principles by which these interactions vary across different
cognitive states. Interestingly, we did observe that the SVM classifier
was most accurate in distinguishing the conditions that were rated as
least difficult and had the least inter-subject variability―the movie and
artwork conditions. It is possible that participants were better able to
adopt the desired cognitive states in these conditions, providing clear
and specific patterns of FC. On the other hand, it is possible that the
classifier performed worse at distinguishing the shopping and intro-
spection conditions because participants were less able to consistently
adopt the desired cognitive states, resulting in less differentiable FC
patterns. Thus, the ease with which participants can perform different
instructed tasks may influence the extent to which it is possible to
detect reliable variation in FC patterns across contexts. Another
possibility is that the movie and artwork conditions were associated
with better classification because they were the most structured and
stimulus driven and may have constrained FC patterns more than the
other conditions that allowed more room for cognitive variability.

4.4. Temporal co-evolution of large-scale network interactions

Network organization dynamically changes across time (Allen et al.,
2014; Betzel et al., 2016; Hutchison et al., 2013; Liegeois et al., 2015;
Poldrack et al., 2015; Zalesky et al., 2014), with higher-order associa-
tion cortices exhibiting considerable flexibility (Braun et al., 2015; Cole
et al., 2013), which may contribute to the context-dependent regulation
of thought and perception (Duncan, 2010; Miller and Cohen, 2001).
Thus, network neuroscience is now demonstrating a correspondence
between the dynamic landscape of network properties and the dynamic
nature of cognitive processing. Prior work has shown that sets of
functional connections change in strength across time in parallel
(Bassett et al., 2014; Davison et al., 2015), and that global brain
dynamics exhibit shifts between periods of segregation and integration
(Betzel et al., 2016; Liegeois et al., 2015; Shine et al., 2016; Shine et al.,
2016; Zalesky et al., 2014), with between-network connections exhibit-
ing the strongest time-varying dynamics (Zalesky et al., 2014).
Although DN-DAN anticorrelation is thought to be a robust feature
of brain organization, we observed that DN-DAN interactions alter-
nated across time between periods of anticorrelation and periods of
positive correlation. In fact, we found positive FC (r > 0) in about 50%
of windows for each of the DN subsystems (slightly fewer windows for
the Core subsystem). This suggest frequent transitions between periods
of segregation and periods of integration. Prior work offered suggestive
evidence that negative FC involving the DN varies across time (Allen
et al., 2014; Chang and Glover, 2010). Here, we extend this work by
using well-established network boundaries and quantifying the number
of windows exhibiting departures from negative FC. Time-dependent
interactions between the DN and DAN may provide a balance between
functional specialization, and the opportunity for information exchange
that allows perception to inform internally-oriented thinking and vice
versa.

Using a hypothesis-driven approach, we further found that varia-
tion across time in the strength of DN-DAN FC was related to larger
patterns of temporal co-evolution between large-scale networks. While
prior work has investigated the co-evolution patterns of node-to-node
connections across the brain (Bassett et al., 2014; Davison et al., 2015),
here we expand on this approach and demonstrate that additional
information can be gleaned by constraining such analyses based on
theoretical predictions and knowledge of network organization (Yeo
et al., 2011). Moreover, our focus on network interactions obviates the
need to perform a large number of statistical tests on all time-
dependent node-to-node interactions. Within each context, we found
that as the FPCN became more anticorrelated with the DAN, the DAN
became more anticorrelated with the DN Core and dorsomedial
prefrontal subsystems. Interestingly, FPCN interactions with the DN
subsystems were not coordinated with DAN-DN interactions suggest-
ing that network co-evolution does not merely represent global changes
across the brain, but rather, is spatially specific. It is possible that
different network relationships could emerge in other contexts (e.g.,
greater positive FPCN-DAN coupling may be associated with stronger
DAN-Core anticorrelation during a visuospatial working memory task).
However, the key point is that our findings provide novel evidence for
coordinated changes in FC strength across multiple large-scale net-
works. Importantly, we found that these temporal changes in between-
network FC were uncorrelated with temporal changes in participant
motion, suggesting that they are not artifactual.

One possibility is that these structured temporal changes in large-
scale network interactions reflect shifting attentional priorities.
Abundant evidence suggests that the FPCN encodes task demands,
and transmits signals about the current relevance of stimuli, actions,
and outcomes to other regions, thus coordinating processing across the
cortex (Buschman and Miller, 2007; Cole et al., 2015; Crowe et al.,
2013; Dixon and Christoff, 2012, 2014; Dixon et al., 2014a; Duncan,
2010; Miller and Cohen, 2001; Tomita et al., 1999). Here, we extend
these findings by demonstrating that FPCN FC patterns are tightly

M.L. Dixon et al. NeuroImage 147 (2017) 632–649

645



coupled with the strength of DN-DAN FC changes across time. The
large-scale network co-evolution we observed here could potentially
reflect moment-to-moment shifts in the distribution of attention
between perceptual information and internally-oriented conceptual
thought. One possibility is that periods of stronger anticorrelation
between the FPCN and DAN occurring in concert with stronger
anticorrelation between the DAN and the Core and dorsomedial
prefrontal subsystems could potentially reflect a state characterized
by a decoupling between perceptual processing and abstract thoughts
related to self-reflection or mental state inference. Indeed, given that
the same relationship was not observed with the medial temporal lobe
subsystem, this suggests that the observed network dynamics may
relate to the complexity or abstractness of representations, given the
roles of the Core and dorsomedial prefrontal subsystems in processing
high-level conceptual information related to the self and others
(Andrews-Hanna et al., 2014; Binder et al., 2009; D'Argembeau
et al., 2012; D'Argembeau et al., 2010; Denny et al., 2012; Hassabis
et al., 2013; Simony et al., 2016, but see Konishi et al. (2015)). More
broadly, examining the temporal co-evolution of network interactions
may shed new light on the neural architecture of different cognitive
states and how they evolve across time.

4.5. Limitations

A limitation of the current study is the lack information about the
nature and timing of ongoing cognitive activity, and how it relates to
variability in DN-DAN interactions. To directly compare FC patterns
during various cognitive states and rest, we did not have participants
make responses. However, the lack of behavioral data meant that we
could not link variation in FC patterns to behavioral performance.
Other work has drawn links between task performance and FC patterns
(Braun et al., 2015; Cole et al., 2012; Fornito et al., 2012; Kucyi et al.,
2016; Schultz and Cole, 2016; Shine et al., 2016), and future studies
could further benefit from the use of online experience sampling
(Christoff, 2012; Fazelpour and Thompson, 2014) to map the relation-
ship between FC patterns and cognitive states as they evolves across
time. Additionally, experimenter controlled variations in task demands
on the scale of tens of seconds could also be useful in linking FC
patterns to mental states (Gonzalez-Castillo et al., 2015). A second
limitation is that we used a limited range of task conditions and cannot
specify the principles by which DN-DAN interactions vary across
different cognitive states. While we used a hypothesis-driven approach
to examine our prediction that DN-DAN interactions are not stable but
vary depending on cognitive state, future work could use a range of
tasks that systematically vary the required cognitive operations in order
to provide additional evidence about the factors that govern contextual
variability in DN-DAN interactions. A third limitation pertains to
individual variability in network organization. Although we have
characterized DN-DAN interactions in relation to well-established
network boundaries (Yeo et al., 2011), these boundaries vary across
individuals (Mueller et al., 2013). Future work could improve precision
by using individually-tailored network ROIs (Wang et al., 2015).
Finally, it could be argued that the contextual variation in DN-DAN
FC that we observed was due to idiosyncratic numbers of attentional
lapses in each context. However, several factors make this very
unlikely. First, and foremost, the effect of context was not uniform
across all DN-DAN functional connections. For example, from rest to
the movie condition, some DN-DAN functional connections exhibited
stronger negative FC, while others exhibited weaker negative FC or no
change at all. This finding is inconsistent with a general, non-specific
factor such as arousal driving the effect of context on anticorrelations.
Second, participants reported high levels of attention during the
conditions requiring an external focus. Finally, the machine learning
classifier was able to accurately discriminate mental states for each
participant based on the data from other participants, implying that
there was structure in how DN-DAN FC varied across contexts. Thus,

changes in DN-DAN FC across contexts appear to be specifically related
to differences in the required cognitive demands.

4.6. Conclusions

To summarize, we have found that the DN and DAN have a largely
independent relationship when GSR is not used as part of preproces-
sing. Additionally, DN-DAN interactions are more variable than
previously appreciated, suggesting that these networks and the func-
tions they support are not strictly competitive. DN-DAN interactions
varied across the three DN subsystems, exhibited a high degree of
flexibility across different cognitive states, and alternated across time
from positive to negative functional coupling. Finally, we found that
these changes across time were systematically related to larger patterns
of dynamic network co-evolution involving the FPCN, perhaps reflect-
ing shifting attentional priorities. Together, these findings highlight the
complexity of interactions between large-scale networks underlying
thought and perception.
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