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Abstract

Cognitive control is a fundamental skill reflecting the active use of task-rules to guide behavior and suppress inappropriate
automatic responses. Prior work has traditionally used paradigms in which subjects are told when to engage cognitive
control. Thus, surprisingly little is known about the factors that influence individuals’ initial decision of whether or not to act
in a reflective, rule-based manner. To examine this, we took three classic cognitive control tasks (Stroop, Wisconsin Card
Sorting Task, Go/No-Go task) and created novel ‘free-choice’ versions in which human subjects were free to select an
automatic, pre-potent action, or an action requiring rule-based cognitive control, and earned varying amounts of money
based on their choices. Our findings demonstrated that subjects’ decision to engage cognitive control was driven by an
explicit representation of monetary rewards expected to be obtained from rule-use. Subjects rarely engaged cognitive
control when the expected outcome was of equal or lesser value as compared to the value of the automatic response, but
frequently engaged cognitive control when it was expected to yield a larger monetary outcome. Additionally, we exploited
fMRI-adaptation to show that the lateral prefrontal cortex (LPFC) represents associations between rules and expected
reward outcomes. Together, these findings suggest that individuals are more likely to act in a reflective, rule-based manner
when they expect that it will result in a desired outcome. Thus, choosing to exert cognitive control is not simply a matter of
reason and willpower, but rather, conforms to standard mechanisms of value-based decision making. Finally, in contrast to
current models of LPFC function, our results suggest that the LPFC plays a direct role in representing motivational
incentives.

Citation: Dixon ML, Christoff K (2012) The Decision to Engage Cognitive Control Is Driven by Expected Reward-Value: Neural and Behavioral Evidence. PLoS
ONE 7(12): e51637. doi:10.1371/journal.pone.0051637

Editor: Floris P. de Lange, Radboud University Nijmegen, The Netherlands

Received July 4, 2012; Accepted November 2, 2012; Published December 19, 2012

Copyright: � 2012 Dixon, Christoff. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Natural Sciences and Engineering Council of Canada, grant #05-5918 (to KC). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mattdixon@psych.ubc.ca

Introduction

Everyday life involves constant decision making_what to eat,

what to wear, who to talk to, what to say, etc. Abundant work has

examined the neurocognitive mechanisms of decision making, and

a common value-based framework has emerged, and suggests

quite simply, that decisions are made by estimating the value of

each option and then selecting the option with the higher expected

value [1]. The orbitofrontal cortex (OFC) plays an important role

in this process by representing the relationship between different

options and expected motivational outcomes [2,3,4]. To date,

most studies have utilized simple decision making paradigms, for

example offering a choice between two different food options. As

such, little is known about more complex decision making

involving explicit rules for behavior. Consider a scenario in which

a boss asks an employee to prepare a presentation summarizing

the company’s recent financial progress. This task requires

cognitive control_actively holding in mind task rules in order to

make an appropriate response (and suppressing automatic, pre-

potent responses when necessary). What determines whether the

employee will follow through and decide to actively hold in mind a

set of rules for completing this task instead of going for a coffee

break or doing something else that does not require cognitive

control?

The traditional perspective is that the capacity for reflective,

rule-based behavior is largely based on cold cognitive processes

such as reason, knowledge of social standards, self-monitoring, and

willpower, all of which serve to suppress the influence of desires

that provoke unwanted behaviors [5,6,7]. However, this idea,

predicated on an antithesis between reason and desire (or

motivational processing more broadly), does not satisfactorily

address the question of why individuals engage cognitive control in

the first place. We follow Baumeister and Vohs [8] and Fujita [9]

in suggesting that motivation is a crucial element of any decision,

including those involving self-regulation and rule-based behavior.

The proposal here, is that the decision to engage cognitive control

is based on value-based mechanisms just like the decision of which

fruit to eat with lunch. Thus, in our example, we suggest that the

decision to act in a deliberate, rule-based manner and complete

the proposal is dependent on the expectation that this will lead to a

desired outcome (e.g., praise from the boss; a monthly paycheck).

It is now firmly established that cognitive control processes are

influenced by motivational incentives [10,11,12,13,14,15,16,17],

and recent work has additionally shown that individuals engage

cognitive control during decision making, e.g., choosing a healthy

over a tasty food option [18], a larger, delayed reward over a

smaller, immediate reward [19], and choosing to promote fairness

at the cost of immediate financial benefit [20,21]. However, prior
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work has not directly examined the factors underlying the initial

decision to guide behavior based on explicit rules for action.

Our hypothesis suggests that a critical computation underlying

the decision to engage cognitive control is forming associations

between task-rules and expected motivational outcomes. While the

OFC is critical for representing associations between expected

outcomes and simple options (e.g., a visual object) [2,3,4], we

hypothesized that the lateral prefrontal cortex (LPFC) may be

crucial in the case of rule-outcome associations. The LPFC has

been traditionally considered a purely ‘‘cognitive’’ region that

supports rules for behaviour, and is not involved in motivational

processes. However, accumulating evidence is more consistent

with the idea that the LPFC does in fact play a direct role in

motivational processes. First, the LPFC shares anatomical

connections with both rule-related areas (posterior parietal, lateral

temporal, and pre-motor cortices) and motivation-related areas

(orbitofrontal cortex, rostral anterior cingulate, and insula) (for an

overview see [22]). Second, electrophysiological and neuroimaging

studies have demonstrated that the LPFC is often active during

reward anticipation and receipt [23,24,25,26,27,28]. Finally,

recent neuroeconomic studies have revealed a direct correspon-

dence between LPFC activity and the subjective value assigned to

choice options [29], preference for temporally delayed rewards

[19,26,30], decision making involving risk [31,32], tracking action-

outcome history [33], and a decision making strategy that focuses

on maximizing the overall probability of winning money [34].

In Experiment 1, we modified three classic measures of

cognitive control [Stroop, Wisconsin Card Sorting Task (WCST),

and the Go/No-Go task] to provide a simple laboratory measure

of decision making about rule-based behavior. We examined

whether the decision to select a deliberate, rule-based action rather

than an automatic pre-potent action is influenced by expected

motivational outcomes. In Experiment 2, we used functional

magnetic resonance imaging (fMRI) to look for neural evidence of

rule-outcome associations. In particular, we took advantage of

fMRI-adaptation, which has been widely used to directly examine

the specific information represented by different brain regions

[35,36]. fMRI-adaptation is based on the fact that if a brain region

represents a given piece of information, it will show a change in

the magnitude of activation when that information is repeated as

compared to when it is presented for the first time. Repeated

relative to novel information often elicits a smaller neural response

(repetition suppression), although in some cases a greater response

is observed (repetition enhancement). fMRI-adaptation is most

commonly used in studies of visual processing, but has also been

used to examine the neural basis of stimulus-response learning

[37], mirror neurons [38], semantic decision making [39], theory

of mind [40] and rule representation [41]. Using a 262 factorial

design in which the factors were rules (novel versus repeated) and

reward outcome (novel versus repeated), we examined whether the

LPFC shows fMRI-adaptation when there is repetition of a

specific rule-outcome pairing, relative to when the pairing is novel.

Results

Behavioral Results
Subjects performed three different tasks (Stroop task, WCST,

and Go/No-Go task) with the same structure. First, during a

training period, an automatic pre-potent response was established

by having subjects respond to the stimuli in one way over the

course of many trials (e.g., Stroop: respond based on the word

meaning). Second, there was a free-choice decision making period

during which subjects had the option of selecting the automatic,

pre-potent response, or an alternative response requiring cognitive

control (e.g., Stroop: responding based on the ink colour now

requires active maintenance of the task rules to overcome the pre-

potent tendency to respond based on the word meaning). Prior to

each mini-block of four decision making trials, subjects saw a

screen indicating the amount of money that could be earned for

selecting each response type (e.g., Stroop: word meaning = 25¢, ink

color = 50¢). There was no feedback after choices; thus, decisions

were most likely driven by an explicit representation of the

expected monetary outcomes.

The results demonstrated that reaction times were faster when

subjects selected the automatic response relative to the cognitive

control-based response during the free-choice period, suggesting

that the training period indeed led to a pre-potent response (paired

t-test: Stroop: p = .059; WCST: p,.001; RTs could not be

compared for the Go/No-Go task given that the cognitive control

response was in fact withholding a response). Figure 1 illustrates

the percentage of cognitive control responses during the free-

choice period as a function of expected monetary rewards.

Separate one-way repeated measures ANOVAs with expected

reward amount as the independent variable indicated that for each

task, subjects’ decisions during the free-choice period were robustly

influenced by the size of the expected monetary rewards for each

response type [Stroop: F(4, 60) = 15.28, p,.001; WCST: F(4,

60) = 24.93, p,.001; Go/No-Go: F(4, 60) = 17.39, p,.001].

Subjects rarely engaged cognitive control when the expected

monetary reward was equal to, or less than the expected monetary

reward for the automatic, pre-potent response. In contrast,

subjects frequently engaged cognitive control when it was expected

to yield the larger payoff (i.e., 25¢/50 ¢ and 25¢/$1.00 conditions)

(Figure 1). These findings provide direct evidence that the decision

to engage cognitive control is driven by explicit expectations of

motivational outcomes that will result from rule-use.

Many subjects remarked that the WCST was the easiest task,

whereas the Stroop task was the most difficult, and interestingly,

decisions were influenced by this apparent difference in task

difficulty. A 2 (task: Stroop vs WCST) 65 (expected reward

amount) repeated measures ANOVA revealed that subjects were

more likely to engage cognitive control in the WCST compared to

the Stroop task [main effect of task: F(1, 15) = 5.68, p = .031],

especially when engaging cognitive control was the more

rewarding option [task x condition interaction: F(4, 60) = 2.58,

p = .046] (Figure 1). This result could reflect a greater number of

unsuccessful attempts at engaging cognitive control in the Stroop,

or greater intentional selection of the automatic response. To

differentiate, we performed an analysis at the level of mini-blocks.

Subjects were aware that earning money was contingent on

correct performance across each trial of a given mini-block.

Therefore, selection of the cognitive control response on 3/4 trials

would suggest one incorrect response during that mini-block,

rather than intentional selection of the automatic response.

Conversely, greater selection of the automatic response in the

Stroop task would be reflected in a greater number of mini-blocks

in which subjects selected the automatic response on 3/4 or 4/4

trials. This latter scenario is what we found [main effect of task:

F(1, 15) = 7.34, p = .016], suggesting that the difference between

the Stroop and WCST was driven by greater selection of the

automatic response in the Stroop task.

Neuroimaging Results
Having established that the decision to engage cognitive control

is based on expected motivational outcomes, we next looked for

evidence that the LPFC represents associations between rules and

expected outcomes. Such associations should be a critical neural

computation underlying the decision process. Although recent

Cognitive Control and Decision Making
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work has shown that motivational incentives modulate cognitive

control related activation in the LPFC (e.g., [10,11], it is assumed

that this reflects an amplified representation of just the task rules

[16]. However, it is just as possible that this pattern actually

reflects a representation of the motivational outcome in relation to

the rules. Thus, prior work has been unable to determine the

specific nature of the information represented by the LPFC. To

circumvent this interpretational limitation inherent to standard

paradigms, we took advantage of fMRI-adaptation, a widely used

as a tool for directly examining the specific information

represented by different brain regions [35,36].

In our paradigm (see Material and Methods and Figure 2), each

trial started with an instruction cue that indicated one of two rules

to use (male/female face discrimination, versus abstract/concrete

word discrimination), and also indicated one of two expected

motivational outcomes (25¢ monetary reward, versus no monetary

reward). Following presentation of the instruction cue, subjects

made a button response to a face or word stimulus. The key

feature of the task is that on certain trials, a second instruction cue

appeared prior to the stimulus, and relative to the first instruction

cue, we manipulated whether there was repetition of the rules,

repetition of the outcome, repetition of the rule-outcome pairing,

or presentation of a novel rule-outcome pairing. (Although this

task differs in surface features from the behavioral tasks, it shares

the core cognitive control requirement of active maintenance of

task rules due to the constant switching of rules from trial to trial.

Moreover, this task was designed to minimize response and

perceptual conflict, thus allowing us to examine the neural

representation of rule-outcome associations in the absence of

potential confounding variables.)

To examine fMRI-adaptation, we analyzed activation during

the second instruction cue according to a 2 (rules: novel versus

repeated) 62 (outcome: novel versus repeated) factorial design. If

the LPFC shows an interaction effect, demonstrating fMRI-

adaptation when there is repetition of a specific rule-outcome

pairing, but not when there is repetition of just the rules alone or

just the outcome alone, then this would provide compelling

evidence that the LPFC represents associations between rules and

outcomes. fMRI-adaptation could manifest in two ways: 1) smaller

activation for a repeated rule-outcome pairing relative to a novel

pairing (repetition suppression), which could result from lower

processing demands when re-activating a recently experienced

rule-outcome pairing; or 2) greater activation for a repeated rule-

outcome pairing (repetition enhancement), which could result

from a reinforced expectation that a particular rule-outcome

pairing would be used on that trial. For our purposes, the direction

of the fMRI-adaptation effect was not important. Rather, the

important question was whether we would observe fMRI-

adaptation selectively during the repeated rule-outcome pairing

condition.

Behavioral Results. Consistent with the idea that subjects

were representing the relationship between rules and expected

motivational outcomes, subjects were faster to respond during

single cue trials when money was available to be won

(Mmoney = 857.70, SD = 58.77) as compared to when no money

was available (Mnomoney = 898.83, SD = 92.54) [t(14) = 2.82,

p = .014; two-tailed]. There was no difference in accuracy

(Mmoney = 98.13%, SD = 3.66% vs Mnomoney = 96.87%,

SD = 2.95%) (p..3). This incentive effect suggests that subjects

were paying attention to the instruction cues and using them to

prepare for each trial.

Validation of the fMRI-Adaptation Paradigm. We first

examined the main effects of our 262 factorial design to validate

our paradigm. Canonical regions associated with reward process-

ing were expected to show fMRI-adaptation when reward

information alone was repeated, and canonical regions associated

with rule processing were expected to show fMRI-adaptation

when rule information alone was repeated. Indeed, consistent with

prior work [29,30,42], repetition of the expected monetary reward

outcome was associated with repetition suppression (i.e., a smaller

BOLD response) in the rostral (pregenual) anterior cingulate

cortex (rACC) extending into the anterior mid-cingulate cortex

(aMCC), bilateral nucleus accumbens (NAcc), globus pallidus,

bilateral anterior insula, caudal OFC, posterior cingulate cortex

(PCC), near the mid-brain dopaminergic nuclei, and left inferior

frontal gyrus (Table S1; Z.2.57, p,.05 FWE cluster-corrected).

Consistent with prior work examining rule processing

[41,43,44], repetition of the rules was associated with repetition

Figure 1. Behavioral Results. Percentage (%) of choices in which cognitive control was selected during the free-choice period as a function of
expected monetary rewards. Error bars represent one (within-subject) standard error of the mean based on Loftus and Masson [69].
doi:10.1371/journal.pone.0051637.g001
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suppression in the left inferior frontal gyrus (IFG; pars triangula-

ris), left ventral premotor cortex extending into the posterior IFG

(pars opercularis), supplementary motor area, aMCC, cerebellum,

and left lateral temporal cortex including the posterior middle

temporal gyrus (Table S2; Z.2.57, p,.05 FWE cluster-corrected).

Repetition enhancement for repeated rules was observed in the left

rostrolateral prefrontal cortex, left posterior middle frontal gyrus,

and bilateral inferior parietal lobule. Together these findings

demonstrate that key reward related areas exhibited fMRI-

adaptation when just the motivational outcome was repeated,

and key rule related areas exhibited fMRI-adaptation when just

the rules were repeated.

The LPFC Represents Rule-Outcome Associations. To

examine our main question of whether the LPFC supports rule-

outcome associations, we looked for an interaction between the

rule and reward outcome factors, i.e., fMRI-adaptation when

there is repetition of a specific rule-outcome pairing. Three areas

within the right LPFC demonstrated an interaction in the form of

repetition enhancement: 1) the inferior frontal sulcus (IFS; , BA

45/46) extending onto the adjacent inferior and middle frontal

gyri; 2) the pre-motor cortex (PMC) extending into the inferior

frontal junction (IFJ; ,BA 44/6); 3) the posterior dorsolateral

prefrontal cortex (pDLPFC; ,BA 8) (Figure 3a and Table 1;

Z.2.57, p,.05 FWE cluster-corrected). The time-courses extract-

ed from these regions (Figure 3b) demonstrated that activation

increased for a repeated rule-outcome pairing relative to the novel

rule-outcome pairing condition. Importantly, our exclusive mask-

ing analysis (see Materials and Methods) ensured, and visual

inspection of the timecourse confirms, that these regions were not

sensitive to repetition of the rules alone, or repetition of the reward

outcome alone. Thus, these right LPFC areas are not showing an

additive effect, but rather, are uniquely sensitive to specific rule-

outcome associations. There were no behavioral differences across

conditions [reaction time: F(3, 42) = 1.232, p = .31; accuracy: F(3,

42) = 1.196, p = .32], ruling this out as a confounding influence.

The IFS is Functionally Connected to Rule and Reward

Regions. Based on the anatomical connections of the LPFC and

the hypothesized associative function, we predicted that the LPFC

would exhibit tonically coupled activity with rule related and

outcome related regions. Consistent with this idea, and reinforcing

the fMRI-adaptation findings, we found that the LPFC peak in the

IFS exhibited significant functional connectivity with both rule and

reward outcome processing regions across the entire experimental

time-course (Figure 4 and Table 2; Z.2.57, p,.05 FWE cluster-

corrected). IFS activation was significantly correlated with

activation in rule processing areas including bilateral frontopari-

etal and lateral temporal cortices, as well as the aMCC, and

cerebellum. Additionally, IFS activation was significantly corre-

lated with activation in reward outcome processing areas including

the rACC, bilateral caudate/NAcc, PCC, right OFC, and bilateral

anterior insula. This pattern of connectivity is consistent with the

idea that the IFS supports associations between rules and reward

outcomes. Notably, these correlations probably reflect both

spontaneous fluctuations and task-based influences (i.e., the

functional requirement of processing rules and motivational

outcomes).

Discussion

Modern human life frequently requires cognitive control_select-

ing behaviors deliberately based on task rules held in work

memory and suppressing automatic, inappropriate responses.

What determines whether an individual will engage cognitive

control at any given time? Across three different tasks_Stroop,

WCST, and Go/No-Go_we found evidence that this decision is

driven by expected motivational outcomes. That is, subjects’

decision to select a response requiring active maintenance of the

task rules depended on whether it was expected to yield a larger

monetary reward than a pre-potent response. Importantly, there

was no opportunity for trial-and-error learning of response value,

suggesting that decisions were based on an explicit representation of

expected outcomes. Self-reports collected after the experiment

confirmed that subjects were aware of their choices and associated

outcomes. Moreover, our results cannot be explained by a strategy

in which subjects tended to exploit the automatic response and

occasionally explore the cognitive control response; computational

modeling has demonstrated that the decision to explore is largely

driven by uncertainty and acquisition of new information [45],

whereas in our task subjects were fully aware of the reward

outcomes for each option, and therefore, had no reason to explore.

Despite the intuitive nature of the idea that the decision to

engage cognitive control is driven by desired motivational

outcomes, a dominant paradigm has been understanding reflec-

tive, rule-based behavior in terms of strictly cognitive mechanisms:

Figure 2. Trial Structure for the fMRI Experiment. After a variable duration fixation cross, an instruction cue signaled the currently relevant rules
(profile of faces = male/female rule; book = abstract/concrete rule) and whether or not to expect a monetary reward (blue vase = no money;
bills = 25¢). This was followed by a variable duration delay period and then a word or face stimulus, during which subjects made a button response.
Finally, a screen revealed whether money had been earned on that trial and cumulative winnings. On key trials, a second instruction cue appeared
before the stimulus. Across the two instruction cues, we varied whether there was repetition of the rules, expected reward, both, or neither.
doi:10.1371/journal.pone.0051637.g002
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Figure 3. Regions Showing Repetition Enhancement for Repetition of a Specific Rule-Outcome Pairing (Z.2.57, p,.05 FWE cluster
corrected for the whole-brain). A. Right lateral view showing regions of the LPFC exhibiting this effect. B. Activation time-course for the IFS, IFJ,
and posterior DLPFC time-locked to the onset of the second instruction. The color scale denotes t-values. Nov = novel, rep = repeated. Error bars
represent one (within-subject) standard error of the mean based on Loftus and Masson [69].
doi:10.1371/journal.pone.0051637.g003

Table 1. Regions exhibiting fMRI-adaptation for repetition of rules and reward.

MNI coordinates

Region Hemisphere BA X Y Z Z-score

Repeated rules and reward . novel rules and reward (repetition enhancement for rules and reward)

IFS Right 45/46 48 36 12 4.72

PMC Right 6/44 51 12 27 4.82

IFJ Right 6/8/44 42 6 33 4.49

pDLPFC Right 8 33 15 45 3.89

aIPS Right 40 54 242 54 4.78

vIPS Right 7/19 33 278 36 4.73

FFG Right 19 39 260 212 5.09

MOG Left 18 233 287 18 3.86

Repeated rules and reward , novel rules and reward (repetition suppression for rules and reward)

Cerebellum Right 36 260 251 6.26

Reported regions are significant at Z.2.57, p,.05 FWE cluster corrected for the whole-brain volume (k.112). BA = Brodmann area. IFS = inferior frontal sulcus;
PMC = pre-motor cortex; IFJ = inferior frontal junction; pDLPFC = posterior dorsolateral prefrontal cortex; aIPS = anterior intraparietal sulcus; vIPS = ventral intraparietal
sulcus; FFG = fusiform gyrus; MOG = middle occipital gyrus.
doi:10.1371/journal.pone.0051637.t001
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reasoning, social standards, self-monitoring, and willpower [5,6,7].

Desire and motivation have been seen as obstacles for self-

regulation. However, this idea overlooks the fact that individuals

will only deliberately regulate their behavior if they are motivated

to do so [8,9]. Thus, in contrast to the perspective that successful

self control is based on cold cognitive mechanisms overriding

desires, we suggest that it is based on selecting the ‘‘proper’’

motivational incentive to guide action (often an incentive with

long-term as opposed to immediate value). In other words, we

suggest that decision making about rule-based behavior conforms

to standard mechanisms of value-based decision making. The

decision to follows rules at school or in the workplace and the

decision to eat a chocolate bar may not be so different—both are

driven by expected motivational outcomes, although the particular

outcomes guiding those actions may be quite different. One

implication of our findings is that promoting cognitive control may

be more successful if time is taken to explicitly acknowledge the

relationship between rules and outcomes. It would be useful for

future work to directly compare the efficacy of different types of

reward outcomes in motivating cognitive control and to investigate

whether this pattern changes across the lifespan.

Decisions are not driven by expected reward magnitude alone,

but factor in additional variables including probability of reward

occurrence, required effort expenditure, and delay until the

reward [46,47,48,49]. It is suggested that these variables are

integrated together resulting in an overall subjective ‘‘decision

value’’. Interestingly, we found that the tendency to engage

cognitive control differed across our three behavioral tasks, being

lowest for the Stroop task—the hardest task based on anecdotal

reports. If the Stroop task required greater effort, this would have

resulted in a lower decision value for engaging cognitive control

relative to the easier tasks, and consequently, greater selection of

the automatic response. Moreover, within each task, subjects

almost invariably selected the automatic response when it was

expected to yield a reward of equal magnitude to the cognitive

control based response. This is again consistent with the idea of

decision value, in that active maintenance of rules is generally

assumed to require greater effort than a pre-potent response.

Thus, our findings are consistent with the idea that subjects were

integrating expected rewards with effort costs, however, future

studies are necessary to directly examine this proposal.

Complementing the behavioral data, our fMRI-adaptation

findings provide the first direct evidence that the lateral prefrontal

cortex (LPFC) supports associations between rules and expected

motivational outcomes. Several areas within the right LPFC

including the inferior frontal sulcus (IFS) exhibited repetition

enhancement uniquely when there was repetition of a specific rule-

outcome pairing, but not when there was repetition of the rules

alone or the expected outcome alone. Although repetition

suppression is the more commonly observed form of fMRI-

adaptation, repetition enhancement has also been demonstrated in

numerous studies [37,50,51,52,53,54], and may reflect a process of

reinforcing top-down expectations for particular information

[52,55]. Irrespective of the precise interpretation of repetition

Figure 4. Regions Exhibiting Functional Connectivity with the IFS Across the Entire Time-Course (Z.2.57, p,.05 FWE cluster
corrected for the whole-brain). Rule areas (blue arrows) include bilateral lateral prefrontal cortex (LPFC), anterior mid-cingulate cortex/
dorsomedial prefrontal cortex (aMCC/DMPFC), posterior middle temporal gyrus (pMTG), and intraparietal sulcus (IPS). Reward areas (red arrows)
include rostral anterior and posterior cingulate cortices (rACC, PCC), orbitofrontal cortex (OFC), caudate/nucleus accumbens (NAcc), and insula. The
color scale denotes t-values, and the numerical values above the images correspond to MNI coordinates. For axial and coronal slices, the right
hemisphere is on the right side of the image. LH = left hemisphere, RH = right hemisphere.
doi:10.1371/journal.pone.0051637.g004
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enhancement effects, the important point is that it is believed to

reflect the representation of specific information, and in our case,

the effect in the LPFC was selective to repetition of a specific rule-

outcome pairing. Moreover, strong corroborating evidence was

provided by a functional connectivity analysis showing that the

LPFC (specifically the IFS) exhibited correlated activity with both

rule and reward related regions, consistent with this region serving

as an integrative hub, linking rule and reward information. Our

findings are additionally consistent with the anatomical connec-

tions of the LPFC [22] and recent work demonstrating activation

near the right IFS during reward-based decision making

[29,30,31] and during cognitive control engagement when

monetary rewards are available [10].

Our findings are consistent with the idea that the LPFC actively

maintains in working memory a representation of rules and the

likely outcomes that will result from of implementing those rules.

Creating such ‘online’ associations would allow the reward-value

of specific rules to be rapidly updated when the state of the

environment changes. This explicit rule-outcome associative

mechanism for promoting cognitive control is consistent with the

idea of a model-based learning system [56] and may operate in

parallel with other (model-free) mechanisms. For example,

O’Reilly and Frank [57] suggest that the mid-brain/basal ganglia

system uses trial-and-error reinforcement learning to gradually

‘‘teach’’ the LPFC about information that should be held in

working memory. This process would be akin to forming a habit to

engage cognitive control. This mechanism may be efficient for

engaging cognitive control in stable, familiar environments after

learning has taken place. In contrast, explicit associations between

rules and expected rewards may dominate in novel or rapidly

changing environments, and situations in which overt reward

feedback is not provided and there is no possibility for dopamine

mediated reinforcement learning.

It is also useful to consider our findings in relation to

performance monitoring theories [16,58,59]. These theories

suggest that detection of motivationally salient events by the

MPFC including response conflict, rewards, and errors, will result

in a modulatory gain signal that is sent to the LPFC to influence

the strength of cognitive control. This account provides a

parsimonious mechanism by which motivational events could

dynamically alter the strength of an already activated rule. It does not

however, directly address how a rule is initially selected to guide

Table 2. Regions exhibiting significant functional connectivity with the IFS.

MNI coordinates

Region Hemisphere BA X Y Z Z-score

pIFG/IFJ/ventral PMC Right 44/6 57 18 27 5.03

RLPFC Left 10/45 254 51 0 4.57

IFS/IFG Left 45/46 248 38 15 4.03

Mid-cingulate/DMPFC Medial 6/8/32 9 24 39 4.85

vIPS Right 7/19 36 275 39 5.52

aIPS Right 40 57 236 51 3.98

IPS Left 7/39 227 266 45 3.60

aIPS/IPL Left 7/40 248 239 42 3.31

pMTG Right 21/37 57 245 212 4.36

pMTG Left 21/37 263 254 29 4.21

FFG/PHG Left 20 236 236 224 4.12

FFG/PHG Right 36 218 227 3.46

Cerebellum Right 12 239 233 3.80

rACC Medial 24/32 29 39 6 4.46

rACC Medial 24/32 12 45 0 4.45

OFC Right 11/13 36 39 212 4.78

PCC Medial 23/31 6 233 33 4.40

Nacc/Caudate Left 212 3 9 5.63

NAcc/Caudate Right 15 15 3 4.54

GP/Putamen Right 21 6 23 4.14

Mid-Brain Right 26 218 26 4.66

Anterior Insula Right 39 21 26 4.10

PAG Right 6 224 26 5.00

PAG Left 26 224 26 4.73

Thalamus (MD) Right 9 212 0 4.13

Reported regions are significant at Z.2.57, p,.05 FWE cluster corrected for the whole-brain volume (k.106). BA = Brodmann area. vIPS = ventral intraparietal sulcus;
aIPS = anterior intraparietal sulcus; pIFG = posterior inferior frontal gyrus; IFJ = inferior frontal junction; PMC = premotor cortex; DMPFC = dorsomedial prefrontal cortex;
IFS = inferior frontal sulcus; pMTG = posterior middle temporal gyrus; FFG = fusiform gyrus; PHG = parahippocampal gyrus; IPL = inferior parietal lobule; NAcc = nucleus
accumbens; PAG = periacqueductal gray; OFC = orbitofrontal cortex; rACC = rostral anterior cingulate cortex; VMPFC = ventromedial prefrontal cortex; PCC = posterior
cingulate cortex; GP = globus pallidus; MD = mediodorsal nucleus.
doi:10.1371/journal.pone.0051637.t002
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action. By definition, a modulatory gain signal sent by the MPFC

will simply amplify whatever is already being represented by the

LPFC. Our findings together with this model suggests the

following: a specific rule is initially selected to guide action based

on the explicit expectation that using the rule will lead to a

desirable outcome (mediated by the LPFC), and then the strength

of the selected rule is optimized according to ongoing performance

and events in the environment (mediated by MPFC-LPFC

interactions).

A widespread heuristic for understanding the organization of

the prefrontal cortex is that the LPFC supports complex cognitive

processes (including rule-use) whereas orbital and medial prefron-

tal areas support motivational processes. One problem with this

perspective is that it is largely predicated on studies that have

conflated task difficulty with presence of motivational incentives.

In general, studies examining motivational processing have used

simple tasks, while studies of complex cognition have rarely

incorporated rewards (or other motivational incentives). Recent

work has started to depart from this methodological trend, and has

revealed LPFC involvement in numerous aspects of complex

motivational processing: decision making involving risk [31,32],

integrating multiple variables (e.g., reward magnitude and delay)

to discern the best course of action [26,30], monitoring action-

outcome history during strategic decision making [33], represent-

ing the long-term motivational context (i.e., what reward is likely

to occur over many trials) [24], and specific decision making

strategies [34]. Moreover, recent work has demonstrated that

cognitive control related activity in the LPFC is modulated by the

availability of reward incentives [10,11,14,15,17]. Finally, our

findings directly suggest that the LPFC has a role in complex

motivational processing by representing the relationship between

specific rules for action and expected motivational outcomes. This

idea is a natural extension of work highlighting the role of the

orbitofrontal cortex in representing object-outcome associations

[2,3,4], and the role of the cingulate cortex in representing action-

outcome associations [60,61]. In sum, it is clear that the LPFC has

a more direct role in motivational processes than traditionally

recognized.

Some methodological considerations are worth noting. We

designed our fMRI task to minimize the impact of extraneous

factors that might account for any fMRI-adaptation effect we

might observe. Importantly, we held constant the content of the

second instruction cue allowing us to examine neural activation in

response to the identical event, simply as a function of how it was

primed by the first instruction cue. This ensures that the fMRI-

adaptation effects we observed cannot be explained by differences

across conditions in visual processing or interpretation of the

second instruction cue, or differences relating to expectation of the

ensuing stimulus. Furthermore, given that there was never

repetition of visual information across the first and second

instruction cue, we can be sure that fMRI-adaptation was related

to repetition of the conceptual representation of the rules and

expected reward and not to repetition of the visual symbols used to

signal this information. Additionally, it is unlikely that our findings

are due to differences across conditions in difficulty, attention, or

effort. It could be argued that when the second instruction cue

signals repeated rules and reward, the task is easier, and subjects

don’t really need to process or attend to the second instruction cue,

and therefore, may engage in mind-wandering—and that this led

to the increased activations (i.e., the repetition enhancement effect)

that was selective to this condition. This is very unlikely for two

reasons: 1) increased activation was not observed in medial

prefrontal and parietal regions that are consistently associated with

mind-wandering and 2) mind-wandering is often associated with

poorer performance, however, we found that performance was

equivalent across conditions. Additionally, in the unlikely case that

the repeated rule-reward pairing condition was more difficult and

required greater effort or attention, it would be expected to result

in a quantitative difference in activation levels across conditions (akin

to a gain enhancement effect). However, we found a qualitatively

different pattern of activations; the repetition enhancement effect

was observed after masking out all voxels that were sensitive to

repetition of the rules alone or repetition of the reward alone.

In summary, our findings suggest that individuals will engage

cognitive control when they see the value in doing so_that is, when

rule-use is expected to yield a desired outcome. The LPFC

contributes to this process by representing associations between

rules and expected outcomes, and performs this associative

function within the context of interactions with widely distributed

rule and reward related regions. An implication of our findings is

that individual differences in cognitive control may result not only

from the capacity to represent rules, but also the capacity to

discern (or focus on) motivationally significant outcomes that will

result from rule-use. Finally, our findings and several previous

studies [39,40,41] highlight the feasibility of using fMRI-adapta-

tion to examine complex cognitive and motivational processes.

Materials and Methods

The study was approved by the UBC behavioral and clinical

research ethics boards.

Participants
Participants were 16 healthy adults (M = 26.6, SD = 3.4; 8

female) in experiment 1 and 15 (right-handed) healthy adults

(M = 27.4, SD = 5.51; 8 female) in experiment 2, with no history of

psychiatric or neurological illness, and all provided written

informed consent and received payment for their participation.

Behavioral Task Paradigm
All three tasks involved the same structure. First, there was a

short practice block in which subjects had several trials to become

familiarized with responding to the stimuli in the two different

ways (e.g., responding based on the word meaning and based on

the ink colour in the Stroop task). Second, in the training phase, a

habit (i.e., an automatic, pre-potent response) was established by

having subjects repeatedly respond to the stimuli in one way

(Stroop: identify the word meaning; WCST: match based on color;

Go/No-Go: respond to every letter including ‘X’). Subjects

performed a minimum of 100 trials and moved on to the next

phase once they reached an average of 80% accuracy across the

last 20 trials. Finally, in the free-choice phase, subjects were given

the option of responding based on the habit, or based on the

alternative way to respond to the stimulus, which required

cognitive control, i.e., an active representation of the rules to

overcome the habit (Stroop: identify the ink color; WCST: match

based on shape; Go/No-Go: respond to every letter except ‘X’).

Prior to each mini-block of four trials during the free-choice phase,

a screen appeared and indicated the amount of money that could

be earned if the subject chose the habit or engaged cognitive

control (e.g., ink color = 25¢, word meaning = 50¢). Subjects were

told that they would have to respond correctly on four consecutive

trials to earn the money. (in reality all subjects were paid $12 at the

end of the experiment.) Following completion of a four trial mini-

block, the next monetary value screen appeared, and subjects were

free again to choose how to respond. There were 5 conditions,

defined by the following monetary amounts: 25¢/25¢ (equal

value); 50¢/25¢ (habit value greater by a small amount); $1.00/25¢
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(habit value greater by a large amount); 25¢/50¢ (cognitive control

value greater by a small amount); 25¢/$1.00 (cognitive control

value greater by a large amount). Subjects saw each condition

twice in random order. Thus, in total, subjects performed 40 free

choice trials. No feedback was provided after choices, precluding

trial-and-error learning of response value. Rather, subjects could

only use an explicit representation of the expected monetary amounts

to guide their decisions. The order of the Stroop, WCST, and Go/

No-Go task was random, and for each of task, stimulus order was

random with the constraint that within each mini-block, no

particular stimulus appeared more than once.

Stroop Task. During the training phase, on every trial

subjects saw the word red or the word blue, written in red or blue

ink, and pressed one of two buttons to indicate the word meaning.

The ink colour could be congruent or incongruent with the word

meaning. During the free-choice phase, the stimuli were always

incongruent and subjects were free to respond based on the word

meaning (habit response) or the ink color (cognitive control

response). The incongruent stimuli allowed us to discern which

response type the subject was choosing during each mini-block.

For example, if it was the word red written in blue ink, and if the

subject indicated red, that would mean that they identified the

word meaning, whereas if they indicated blue, that would mean

that they identified the ink colour. Stimulus duration was 750 ms

and 1200 ms for the training and free-choice phases, respectively.

A fixation cross appeared after each stimulus for 1000 ms.

Wisconsin Card Sorting Task (WCST). Our simplified

version of the WCST involved just two dimensions, color and

shape. On each trial, subjects saw three coloured-shapes: one

presented in the upper visual field served as the target and the

other two presented in the lower visual field served as the choice

stimuli. Each choice stimulus matched the target on one

dimension (color or shape). During the training phase, subjects

indicated the location (right or left side of the screen) of the choice

stimulus matching the target on the color dimension. During the

free-choice phase, subjects were free to choose: they could indicate

the side of the screen containing the stimulus matching in color

(habit response) or the side of the screen containing the stimulus

matching in shape (cognitive control response). Thus, the cognitive

control response required an extra-dimensional shift. Given that

each choice stimulus matched the target on one dimension, we

could discern which response type they were selecting. The stimuli

were triangles or hexagons and were orange or green. Stimulus

duration was 1000 ms and 1400 ms for the training and free-

choice phases, respectively. A fixation cross appeared after each

stimulus for 1000 ms.

Go/No-Go task. On each trial one of four letters (A, G, T,

X) was presented and subjects made a button press as soon as

possible after appearance of the letter. During the training phase,

subjects responded to all letters including ‘X’. During the free-

choice phase, subjects could continue responding to all letters

(habit response), or they could respond to all letters except for ‘X’,

i.e., inhibit responding when the ‘X’ was presented (cognitive

control response). Stimulus duration was 350 ms for both the

training and free-choice phases. A fixation cross appeared after

each stimulus for 500, 1000, or 1500 ms (duration selected

randomly among these values). The jittered ISI made the task

more difficult and more firmly established a habit to make a

response any time a letter appeared on the screen.

Data Analysis. For each of the five monetary value

conditions, we calculated the percentage of choices during which

the cognitive control response was selected. To confirm that

subjects were making decisions based on explicit knowledge of the

reward outcomes, we also collected self-report data following the

experiment; subjects explicitly noted their intended response as a

function of the expected reward amount presented during the task.

We found 93% correspondence between observed behaviors and

self-reported intended responses.

To compare reaction times (RTs) for the habit-based responses

and cognitive control-based responses, we analyzed median RTs

with paired-samples t-tests (we collapsed across reward amount

conditions, due to the fact that in many cases, a given condition

only elicited one response type; e.g., the automatic response was

almost always chosen for the $1.00/25¢ condition). Given our

strong hypothesis that the cognitive control response would be

slower, directional (one-tailed) p-values are reported.

fMRI-Adaptation Paradigm
The software package E-prime (Psychology Software Tools,

Pittsburg, PA, USA) was used to implement the task. Stimuli were

presented using a back-projection system. The trial structure of the

fMRI-adaptation paradigm is illustrated in Figure 2. On each trial,

subjects performed one of two tasks: decide if a face is male/female

or decide if a word’s meaning is concrete/abstract. These tasks

required simple if-then rules (e.g., if faces task and if male then

press button ‘‘1’’, if female then press button ‘‘2’’). Prior to

stimulus presentation, an instruction cue informed subjects of the

relevant rules to use and whether or not to expect a monetary

reward (25¢ contingent on correct performance). Subjects received

$30 for participating in the fMRI scanning session and were told

that they could earn an additional $30 if they earned all of the

available money. The instruction cues were familiar visual images

that subjects learned prior to the experiment and were selected to

be easy to represent in mind (see Figure 2). The instruction cues

did not specify a particular response, but rather, a set of stimulus-

response contingencies (i.e., rules). Subjects were told to explicitly

think about the rules and expected outcome signaled by each

instruction cue. Following presentation of the instruction cue,

there was a delay period followed by presentation of a word or face

stimulus. During this time, subjects made a button-press response.

Subsequently, a screen indicated cumulative monetary winnings

and whether or not money had been earned on that trial.

On 40% of trials, a single instruction cue appeared prior to the

stimulus. Crucially, on the remaining 60% of trials, the first

instruction cue was followed by a delay period and then

presentation of a second instruction cue. On these double-

instruction cue trials, subjects were told to forget the first

instruction cue and to respond to the stimulus based on the

content of the second instruction cue. These double-instruction

cue trials allowed us to examine fMRI-adaptation.

Given that nearly half of the trials were single cue trials and

subjects were explicitly instructed to avoid expecting a second cue,

this ensured that subjects paid attention to the first cue. Each rule

and expected outcome (money versus no money) was represented

with two different visual images. During repetition of the rules,

expected reward, or both, two distinct visual images were used so

that there was never repetition of the visual features of the cue, but

only its symbolic meaning.

Subjects performed 162 trials in total. There were 96 were

double-instruction cue trials in which each of the four key

conditions noted above appeared 24 times. There were 66 single-

instruction cue trials. There were 12 repetitions of each of the rule-

outcome combinations: male/female rules + no reward; male/

female rules + reward; abstract/concrete rules + no reward;

abstract/concrete rules + reward. The other 18 single-cue trials

were additional male/female rules + no monetary reward trials,

which ensured that 40% of the trials were single-cue trials, 25%

were neutral (no monetary reward), and 25% presented the male/
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female rule. Trials were presented pseudorandomly such that

double-cue trials never occurred more than twice in a row and no

condition appeared more than twice in a row.

Trials began with a jittered interstimulus interval (mean = 4.9 s,

range = 2–7.5 s, increments of 500 ms), followed by presentation

of the first instruction cue (2 s). This was followed by a variable

length delay (mean = 5 s; range = 4–6 s; increments of 1000 ms).

Next the word or face stimulus appeared (2 s) during which time

subjects made their response. Finally a reward screen (1.5 s)

revealed to subjects their total current winnings and also if they

earned money on that trial. On some trials, a second instruction

cue (2 s) appeared followed by a delay (4 s) prior to stimulus

presentation. Given the delay length of 4, 5, or 6 s before the key

event of interest (i.e., instruction cue 2), this allowed us to

effectively estimate the BOLD response separately for the first and

second instruction cues and also provided a temporal resolution of

1000 ms with respect to sampling the hemodynamic response

function.

Given the demanding nature of the task, we included a rest

period of 15 s (filled with a blank screen) in middle of each session

to provide subjects with a brief break. A blank screen also

appeared for 10 s at end of each session to allow the BOLD

response to return to baseline. Additionally, one day prior to

scanning, subjects came in for a one-hour training session.

Subjects learned the correspondence between the instruction cue

visual images and their meaning and then received 80 practice

trials. Although our task was difficult, this training ensured that

during the scanning session, subjects were able to effectively

process the information signaled by each instruction cue.

Stimuli. The words were chosen from the Medical Research

Council Psycholinguistic Database (http://www.psy.uwa.edu.au/

mrcdatabase/uwa_mrc.htm). The words had a minimum of three

letters and a maximum of eight letters, and a minimum written

frequency of 30. Words selected for the ‘‘concrete’’ category (e.g.,

bag), had a concrete rating above 600 and words selected for the

‘‘abstract’’ category (e.g., advice) had a concrete rating below 300.

The face stimuli were high resolution front-view photographs of

neutral expression faces obtained from several image databases

[62,63,64]. In total, 42 photographs (21 male, 21 female) were

selected. The faces were cropped to remove hair and other non-

facial features, gray-scaled, equated in size, and then we added

10% Gaussian noise to increase the difficulty of the face

discrimination (making it more comparable to the abstract/

concrete discrimination). Stimuli subtended 4.5 (width) 64.7

(height) degrees visual angle.

fMRI Data Acquisition. fMRI data were collected using a

3.0-Tesla Philips Intera MRI scanner (Best, Netherlands) with a

standard 8-element 6-channel phased array head coil with parallel

imaging capability (SENSE). Head movement was restricted using

foam padding around the head. T2*-weighted functional images

were acquired parallel to the anterior commissure/posterior

commissure (AC/PC) line using a single shot gradient echo-planar

sequence (repetition time, TR = 2 s; echo time, TE = 30 ms; flip

angle, FA = 90u; field of view, FOV = 24624614.3 cm; matrix

size = 80680; SENSE factor = 1.0). Thirty-six interleaved axial

slices covering the whole brain were acquired (3-mm thick with 1-

mm skip). Data collected during the first 4 TRs were discarded to

allow for equilibration effects. There were six sessions approxi-

mately 9-minutes long each during which 1608 volumes were

acquired in total.

After functional imaging, in-plane inversion recovery prepared

T1-weighted anatomical images were acquired in the same slice

locations as the functional images using a fast spin-echo sequence

(TR = 2 s; TE = 10 ms; 36 interleaved axial slices covering the

whole brain, 3-mm thick with 1-mm skip; FA = 90u;
FOV = 22.4622.4614.3 cm; matrix size = 2406235; reconstruct-

ed matrix size = 4806470; inversion delay = 800 ms; spin echo

turbo factor = 5).

fMRI Data Preprocessing. Image preprocessing and anal-

ysis were conducted with Statistical Parametric Mapping (SPM5,

University College London, London, UK; http://www.fil.ion.ucl.

ac.uk/spm/software/spm5). The time series data were slice-time

corrected (to the middle slice), realigned to the first volume to

correct for between-scan motion (using a 6 parameter rigid body

transformation), and coregistered with the T1-weighted structural

image. The in-plane T1 image was bias-corrected and segmented

using template (ICBM) tissue probability maps for gray/white

matter and CSF. Parameters obtained from this step were

subsequently applied to the functional (re-sampled to 3 mm3

voxels) and structural (re-sampled to 1 mm3 voxels) data during

normalization to MNI space. The data were spatially-smoothed

using an 8-mm3 full-width at half-maximum Gaussian kernel to

reduce the impact of inter-subject variability in brain anatomy.

Finally, a linear detrending procedure [65] was applied to remove

time-series components that were correlated with global changes

in the BOLD signal.

fMRI Data Analysis: First-Level Model. Data were ana-

lyzed at the first level with a general linear model. There were 19

key regressors that were convolved with a synthetic hemodynamic

response function. Four regressors modeled as delta (stick)

functions coded the information contained in the first instruction

cue: (1) male/female rules and no monetary reward, (2) male/

female rules and monetary reward (3) abstract/concrete rules and

no monetary reward, (4) abstract/concrete rules and monetary

reward. Four regressors modeled as variable-duration (4–6 s)

epochs coded the subsequent delay period following each of these

events. Four regressors modeled as delta (stick) functions coded the

second instruction cue_which was always the identical event

(abstract/concrete rules and monetary reward)_as a function of

how it was primed by the preceding instruction cue: (1) novel rules

and novel reward, (2) repeated rules and novel reward, (3) novel

rules and repeated reward, and (4) repeated rules and repeated

reward. Four regressors modeled as 4 s fixed-duration epochs

coded the subsequent delay period after these events. Additional

regressors modeled as delta functions coded presentation of the

stimulus and reward screen, and a regressor modeled as a variable-

duration (10 or 15 s) epoch coded the rest period at the middle

and end of each session. The model also included the six

movement parameters estimated during realignment, and regres-

sors coding session effects. Serial autocorrelations were modeled

using AR(1) and the data were high-pass filtered (1/128 Hz) to

remove low frequency drift in the BOLD signal. Given that

performance was at near ceiling levels, modeling correct and

incorrect responses had a negligible effect, so they were left out in

order to simplify the model.

To examine neural activation during the second instruction cue,

we created four contrast images to capture each of the conditions:

(1) novel rules and novel reward . fixation, (2) novel rules and

repeated reward . fixation, (3) repeated rules and novel reward .

fixation, (4) repeated rules and repeated reward . fixation.

Second-Level Random Effects Analysis. The contrasts

created for each subject were subsequently submitted to a group

level analysis, a 2 (rules: novel versus repeated) 62 (reward: novel

versus repeated) factorial ANOVA. To isolate regions sensitive to

rules alone or the expected reward alone, we examined the main

effects. To probe whether the LPFC is especially sensitive to

specific rule-reward pairings we looked for a specific interaction

between the rule and reward factors in the form of: repeated rules
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and repeated reward , novel rules and repeated reward = re-

peated rules and novel reward = novel rules and novel reward.

This would correspond to repetition suppression for repeated rule

and reward information, and the inverse of this contrast would

correspond to repetition enhancement for repeated rule and

reward information. This interaction was captured with the

contrast weights of: 23 1 1 1 and 3 21 21 21 (for repetition

suppression and enhancement, respectively) [66,67]. Note that

these contrast weights assess the interaction in a valid form that is

meaningful for our theoretical question, and does not assess the

traditional ‘‘cross-over’’ interaction.

To provide a stringent test of the hypothesis that regions

showing an interaction effect were selective to repetition of a specific

rule-reward pairing and not sensitive (even weakly) to repetition of

the rules alone or the reward alone, we used an exclusive masking

analysis. We excluded voxels demonstrating fMRI-adaptation

(repetition enhancement or suppression) for repetition of rules

alone, or reward alone at a very lenient threshold (p,.05

uncorrected), and then we looked for regions demonstrating

fMRI-adaptation for repetition of the rule-reward pairing condi-

tion (at Z.2.57, p,.05 FWE corrected). The lenient threshold for

the voxels being masked out made this a very conservative analysis

with respect to finding regions that exhibit adaptation selectively

for repeated rule-reward pairings. Moreover, the masking analysis

ensured that we were not simply identifying regions showing an

additive effect of rule and reward processing. To identify rule-

selective and reward-selective voxels to be masked out, we used

simple effect contrasts rather than main effect contrasts because

the main effect contrasts include the repeated rules-repeated

reward condition within their computation̄the specific condition

we were interested in identifying.
Correction for Multiple Comparisons. To create maps of

significant effects, we used a cluster-forming threshold of Z.2.57

(p,.005 uncorrected), and corrected for multiple comparisons

using family-wise error (FWE) correction for cluster extent (p,.05)

based on random field theory. Correction for multiple compar-

isons was calculated based on the whole brain volume and

corresponded to a cluster size of between 106–112 voxels,

depending on the specific analysis (adaptation effects or functional

connectivity).
Time-Course Visualization. To visualize the time-course of

the LPFC regions showing an interaction effect, we used the

Marsbar toolbox in SPM5 [68] (http://marsbar.sourceforge.net/)

to extract average signal change values from 3-mm radius spheres

for each subject centered on peak voxels from the group analysis.

We used 12 finite impulse response (FIR) functions, one for each

peristimulus time point within a trial window of 24 s following

onset of the second instruction cue.
Functional Connectivity. We took the IFS time-course

extracted for each subject scaled it by the mean global brain

signal at each time point to minimize the effect of global drift, and

then converted to percent signal change values by subtracting and

diving by the mean value of the ROI for the appropriate session.

The data were also high-pass filtered (1/128 Hz). The normalized

time-course for each subject was then used as a regressor in a first-

level GLM analysis that also included the six motion parameters

obtained from realignment as covariates of no interest. We created

contrast images for each subject assessing positive connectivity

across the 6 functional sessions. These contrast images were then

brought to a second-level random effects analysis and entered into

a one-sample t-test to identify voxels across the brain showing a

correlation with IFS that differed significantly from zero. Our

functional connectivity analysis is very similar to standard

approaches to analyzing resting state networks. However, in this

case, our results will likely reflect both spontaneous fluctuations

and task-related influences.

Supporting Information

Table S1 Regions exhibiting fMRI-adaptation for repe-
tition of the reward. Reported regions are significant at

Z.2.57, p,.05 FWE cluster corrected for the whole-brain volume

(k.112). BA = Brodmann area. PCC = posterior cingulate cortex;

MD = mediodorsal nucleus; AN = anterior nucleus; IFG = inferior

frontal gyrus; NAcc = nucleus accumbens; rACC = rostral anterior

cingulate cortex; OFC = orbitofrontal cortex; pMTG = posterior

middle temporal gyrus; IPS = intraparietal sulcus; aIPS = anterior

intraparietal parietal sulcus; IPL = inferior parietal lobule; IF-

S = inferior frontal sulcus; OTC = occipitotemporal cortex;

MOG = middle occipital gyrus.

(DOCX)

Table S2 Regions exhibiting fMRI-adaptation for repe-
tition of the rules. Reported regions are significant at Z.2.57,

p,.05 FWE cluster corrected for the whole-brain volume (k.112).

BA = Brodmann area. pSTS = posterior superior temporal sulcus;

aMCC = anterior mid-cingulate cortex; SMA/pre-SMA = supple-

mentary motor cortex/presupplementary motor cortex;

pMTG = posterior middle temporal gyrus; IPS = intraparietal

sulcus; IPL = inferior parietal lobule; IFG = inferior frontal gyrus;

IFJ = inferior frontal junction; PMC = premotor cortex;

MOG = middle occipital gyrus; RLPFC = rostrolateral prefrontal

cortex; pMFG = posterior middle frontal gyrus; lOFC = lateral

orbitofrontal cortex; DMPFC = dorsomedial prefrontal cortex.
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