The Mellow Years?: Neural Basis for Improving Emotional Stability Over Age

Leanne M. Williams, Kerri J. Brown, Donna Palmer, Belinda J. Liddell, Andrew H. Kemp, Gloria Olivieri, Anthony Peduto, and Evian Gordon

Mariel Lopa

So let’s face reality:

So there’s good news and there’s bad news:

BAD NEWS:
Reduced memory and executive planning with age

GOOD NEWS:
Behavioral studies have shown an increase in emotional stability with increasing age

GAME PLAN:
- Outline Competing Theories
- Experiment
- Results
- Discuss the Results
- Questions?

Increase in emotional stability as we get older…
- reported less negativity, an easing of emotional intensity, and a reduction in trait neuroticism
- a shift in the ratio of positive-to-negative emotion
Theories of why emotional stability increases with age:
- Retirement=reducing daily stress and negative emotions
- Age related atrophy for brain regions which process positive versus negative emotion
- Change in attitude towards life→ adopt a "life is short!" attitude

Lack of research into the neurological mechanisms!

Point of this research?
To examine the neurological mechanisms of this increase in emotional stability over age
- Examine medial prefrontal cortex (MPFC) implicated in the governance of emotional functions
- Examine the subcortical circuits associated with emotion processing
Use: fMRI and ERP (event related potentials)

THE EXPERIMENT
Participants comprised 242 healthy individuals
122 males, 120 females
Participants were divided into 4 groups:
 Teens
 Young
 Middle
 Old

Participants were assessed on emotional stability using a self-report index of neuroticism from the NEO-Five Factor Inventory
Participants were asked to attend to faces displaying:
 - fear, happiness, or neutral
They rated the perceived intensity of each expression on a scale of 1 (extremely mild) to 5 (extremely intense)
 - ERP and fMRI were recorded

RESULTS
- Neuroticism decreases with age
- MPFC activation decreases with age for response to happiness stimuli
- MPFC activation increases with age for response to fearful stimuli
- There were a total of 4 blocks each for happiness, fear, and neutral
- Each stimuli had 8 pictures
DISCUSSION

As you grow older:
- Response to Fear stimuli increased MPFC activation during the later phase of processing (180-450 ms).
- Response to Happy stimuli activated MPFC was in the automatic earlier phase of processing (150 ms).

DISCUSSION

Going back to the shift in positive-negative emotion ratio
- The MPFC allows positive responses to proceed without much restraint
- The resources for processing emotion in the MPFC are allocated towards processing fear
- Results in more evaluation and control of negative emotion

To summarize and conclude:
- This paper evaluated emotional stability over age based on MPFC activation during fear or happiness stimuli
- Compared activation using ERP and fMRI
- Overall, looked at the plasticity of the brain in regulating negative emotion as we age

Future Research:
- Look into mechanisms of dopamine’s regulation of emotion in the MPFC
- Because of plasticity of our brains as we age, dopamine receptor concentrations change our brains compensate for this change through various changes such as increased cell size

My Opinion:
- GOOD IDEA!
- Can use PET to track dopamine for a more detailed mechanism as to the regulation of emotion as we age

QUESTIONS??